root/ext/pcre/pcrelib/sljit/sljitNativeTILEGX_64.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. sljit_get_platform_name
  2. push_inst_debug
  3. push_inst_nodebug
  4. push_inst
  5. get_any_valid_pipe
  6. insert_nop
  7. compute_format
  8. assign_pipes
  9. get_bundle_bit
  10. update_buffer
  11. flush_buffer
  12. push_4_buffer
  13. push_3_buffer
  14. push_2_buffer
  15. push_0_buffer
  16. push_jr_buffer
  17. detect_jump_type
  18. sljit_generate_code
  19. load_immediate
  20. emit_const
  21. emit_const_64
  22. sljit_emit_enter
  23. sljit_set_context
  24. sljit_emit_return
  25. getput_arg_fast
  26. can_cache
  27. getput_arg
  28. emit_op_mem
  29. emit_op_mem2
  30. sljit_emit_fast_enter
  31. sljit_emit_fast_return
  32. emit_single_op
  33. emit_op
  34. sljit_emit_op_flags
  35. sljit_emit_op0
  36. sljit_emit_op1
  37. sljit_emit_op2
  38. sljit_emit_label
  39. sljit_emit_ijump
  40. sljit_emit_jump
  41. sljit_is_fpu_available
  42. sljit_emit_fop1
  43. sljit_emit_fop2
  44. sljit_emit_const
  45. sljit_set_jump_addr
  46. sljit_set_const
  47. sljit_get_register_index
  48. sljit_emit_op_custom

   1 /*
   2  *    Stack-less Just-In-Time compiler
   3  *
   4  *    Copyright 2013-2013 Tilera Corporation(jiwang@tilera.com). All rights reserved.
   5  *    Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
   6  *
   7  * Redistribution and use in source and binary forms, with or without modification, are
   8  * permitted provided that the following conditions are met:
   9  *
  10  *   1. Redistributions of source code must retain the above copyright notice, this list of
  11  *      conditions and the following disclaimer.
  12  *
  13  *   2. Redistributions in binary form must reproduce the above copyright notice, this list
  14  *      of conditions and the following disclaimer in the documentation and/or other materials
  15  *      provided with the distribution.
  16  *
  17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
  18  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
  20  * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
  21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
  22  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  23  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
  25  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26  */
  27 
  28 /* TileGX architecture. */
  29 /* Contributed by Tilera Corporation. */
  30 #include "sljitNativeTILEGX-encoder.c"
  31 
  32 #define SIMM_8BIT_MAX (0x7f)
  33 #define SIMM_8BIT_MIN (-0x80)
  34 #define SIMM_16BIT_MAX (0x7fff)
  35 #define SIMM_16BIT_MIN (-0x8000)
  36 #define SIMM_17BIT_MAX (0xffff)
  37 #define SIMM_17BIT_MIN (-0x10000)
  38 #define SIMM_32BIT_MAX (0x7fffffff)
  39 #define SIMM_32BIT_MIN (-0x7fffffff - 1)
  40 #define SIMM_48BIT_MAX (0x7fffffff0000L)
  41 #define SIMM_48BIT_MIN (-0x800000000000L)
  42 #define IMM16(imm) ((imm) & 0xffff)
  43 
  44 #define UIMM_16BIT_MAX (0xffff)
  45 
  46 #define TMP_REG1 (SLJIT_NUMBER_OF_REGISTERS + 2)
  47 #define TMP_REG2 (SLJIT_NUMBER_OF_REGISTERS + 3)
  48 #define TMP_REG3 (SLJIT_NUMBER_OF_REGISTERS + 4)
  49 #define ADDR_TMP (SLJIT_NUMBER_OF_REGISTERS + 5)
  50 #define PIC_ADDR_REG TMP_REG2
  51 
  52 static SLJIT_CONST sljit_ub reg_map[SLJIT_NUMBER_OF_REGISTERS + 6] = {
  53         63, 0, 1, 2, 3, 4, 30, 31, 32, 33, 34, 54, 5, 16, 6, 7
  54 };
  55 
  56 #define SLJIT_LOCALS_REG_mapped 54
  57 #define TMP_REG1_mapped 5
  58 #define TMP_REG2_mapped 16
  59 #define TMP_REG3_mapped 6
  60 #define ADDR_TMP_mapped 7
  61 
  62 /* Flags are keept in volatile registers. */
  63 #define EQUAL_FLAG 8
  64 /* And carry flag as well. */
  65 #define ULESS_FLAG 9
  66 #define UGREATER_FLAG 10
  67 #define LESS_FLAG 11
  68 #define GREATER_FLAG 12
  69 #define OVERFLOW_FLAG 13
  70 
  71 #define ZERO 63
  72 #define RA 55
  73 #define TMP_EREG1 14
  74 #define TMP_EREG2 15
  75 
  76 #define LOAD_DATA 0x01
  77 #define WORD_DATA 0x00
  78 #define BYTE_DATA 0x02
  79 #define HALF_DATA 0x04
  80 #define INT_DATA 0x06
  81 #define SIGNED_DATA 0x08
  82 #define DOUBLE_DATA 0x10
  83 
  84 /* Separates integer and floating point registers */
  85 #define GPR_REG 0xf
  86 
  87 #define MEM_MASK 0x1f
  88 
  89 #define WRITE_BACK 0x00020
  90 #define ARG_TEST 0x00040
  91 #define ALT_KEEP_CACHE 0x00080
  92 #define CUMULATIVE_OP 0x00100
  93 #define LOGICAL_OP 0x00200
  94 #define IMM_OP 0x00400
  95 #define SRC2_IMM 0x00800
  96 
  97 #define UNUSED_DEST 0x01000
  98 #define REG_DEST 0x02000
  99 #define REG1_SOURCE 0x04000
 100 #define REG2_SOURCE 0x08000
 101 #define SLOW_SRC1 0x10000
 102 #define SLOW_SRC2 0x20000
 103 #define SLOW_DEST 0x40000
 104 
 105 /* Only these flags are set. UNUSED_DEST is not set when no flags should be set.
 106  */
 107 #define CHECK_FLAGS(list) (!(flags & UNUSED_DEST) || (op & GET_FLAGS(~(list))))
 108 
 109 SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char *sljit_get_platform_name(void)
 110 {
 111         return "TileGX" SLJIT_CPUINFO;
 112 }
 113 
 114 /* Length of an instruction word */
 115 typedef sljit_uw sljit_ins;
 116 
 117 struct jit_instr {
 118         const struct tilegx_opcode* opcode; 
 119         tilegx_pipeline pipe;
 120         unsigned long input_registers;
 121         unsigned long output_registers;
 122         int operand_value[4];
 123         int line;
 124 };
 125 
 126 /* Opcode Helper Macros */
 127 #define TILEGX_X_MODE 0
 128 
 129 #define X_MODE create_Mode(TILEGX_X_MODE)
 130 
 131 #define FNOP_X0 \
 132         create_Opcode_X0(RRR_0_OPCODE_X0) | \
 133         create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
 134         create_UnaryOpcodeExtension_X0(FNOP_UNARY_OPCODE_X0)
 135 
 136 #define FNOP_X1 \
 137         create_Opcode_X1(RRR_0_OPCODE_X1) | \
 138         create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
 139         create_UnaryOpcodeExtension_X1(FNOP_UNARY_OPCODE_X1)
 140 
 141 #define NOP \
 142         create_Mode(TILEGX_X_MODE) | FNOP_X0 | FNOP_X1
 143 
 144 #define ANOP_X0 \
 145         create_Opcode_X0(RRR_0_OPCODE_X0) | \
 146         create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
 147         create_UnaryOpcodeExtension_X0(NOP_UNARY_OPCODE_X0)
 148 
 149 #define BPT create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
 150         create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
 151         create_UnaryOpcodeExtension_X1(ILL_UNARY_OPCODE_X1) | \
 152         create_Dest_X1(0x1C) | create_SrcA_X1(0x25) | ANOP_X0
 153 
 154 #define ADD_X1 \
 155         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
 156         create_RRROpcodeExtension_X1(ADD_RRR_0_OPCODE_X1) | FNOP_X0
 157 
 158 #define ADDI_X1 \
 159         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
 160         create_Imm8OpcodeExtension_X1(ADDI_IMM8_OPCODE_X1) | FNOP_X0
 161 
 162 #define SUB_X1 \
 163         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
 164         create_RRROpcodeExtension_X1(SUB_RRR_0_OPCODE_X1) | FNOP_X0
 165 
 166 #define NOR_X1 \
 167         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
 168         create_RRROpcodeExtension_X1(NOR_RRR_0_OPCODE_X1) | FNOP_X0
 169 
 170 #define OR_X1 \
 171         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
 172         create_RRROpcodeExtension_X1(OR_RRR_0_OPCODE_X1) | FNOP_X0
 173 
 174 #define AND_X1 \
 175         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
 176         create_RRROpcodeExtension_X1(AND_RRR_0_OPCODE_X1) | FNOP_X0
 177 
 178 #define XOR_X1 \
 179         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
 180         create_RRROpcodeExtension_X1(XOR_RRR_0_OPCODE_X1) | FNOP_X0
 181 
 182 #define CMOVNEZ_X0 \
 183         create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
 184         create_RRROpcodeExtension_X0(CMOVNEZ_RRR_0_OPCODE_X0) | FNOP_X1
 185 
 186 #define CMOVEQZ_X0 \
 187         create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
 188         create_RRROpcodeExtension_X0(CMOVEQZ_RRR_0_OPCODE_X0) | FNOP_X1
 189 
 190 #define ADDLI_X1 \
 191         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(ADDLI_OPCODE_X1) | FNOP_X0
 192 
 193 #define V4INT_L_X1 \
 194         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
 195         create_RRROpcodeExtension_X1(V4INT_L_RRR_0_OPCODE_X1) | FNOP_X0
 196 
 197 #define BFEXTU_X0 \
 198         create_Mode(TILEGX_X_MODE) | create_Opcode_X0(BF_OPCODE_X0) | \
 199         create_BFOpcodeExtension_X0(BFEXTU_BF_OPCODE_X0) | FNOP_X1
 200 
 201 #define BFEXTS_X0 \
 202         create_Mode(TILEGX_X_MODE) | create_Opcode_X0(BF_OPCODE_X0) | \
 203         create_BFOpcodeExtension_X0(BFEXTS_BF_OPCODE_X0) | FNOP_X1
 204 
 205 #define SHL16INSLI_X1 \
 206         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHL16INSLI_OPCODE_X1) | FNOP_X0
 207 
 208 #define ST_X1 \
 209         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
 210         create_RRROpcodeExtension_X1(ST_RRR_0_OPCODE_X1) | create_Dest_X1(0x0) | FNOP_X0
 211 
 212 #define LD_X1 \
 213         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
 214         create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
 215         create_UnaryOpcodeExtension_X1(LD_UNARY_OPCODE_X1) | FNOP_X0
 216 
 217 #define JR_X1 \
 218         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
 219         create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
 220         create_UnaryOpcodeExtension_X1(JR_UNARY_OPCODE_X1) | FNOP_X0
 221 
 222 #define JALR_X1 \
 223         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
 224         create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
 225         create_UnaryOpcodeExtension_X1(JALR_UNARY_OPCODE_X1) | FNOP_X0
 226 
 227 #define CLZ_X0 \
 228         create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
 229         create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
 230         create_UnaryOpcodeExtension_X0(CNTLZ_UNARY_OPCODE_X0) | FNOP_X1
 231 
 232 #define CMPLTUI_X1 \
 233         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
 234         create_Imm8OpcodeExtension_X1(CMPLTUI_IMM8_OPCODE_X1) | FNOP_X0
 235 
 236 #define CMPLTU_X1 \
 237         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
 238         create_RRROpcodeExtension_X1(CMPLTU_RRR_0_OPCODE_X1) | FNOP_X0
 239 
 240 #define CMPLTS_X1 \
 241         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
 242         create_RRROpcodeExtension_X1(CMPLTS_RRR_0_OPCODE_X1) | FNOP_X0
 243 
 244 #define XORI_X1 \
 245         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
 246         create_Imm8OpcodeExtension_X1(XORI_IMM8_OPCODE_X1) | FNOP_X0
 247 
 248 #define ORI_X1 \
 249         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
 250         create_Imm8OpcodeExtension_X1(ORI_IMM8_OPCODE_X1) | FNOP_X0
 251 
 252 #define ANDI_X1 \
 253         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
 254         create_Imm8OpcodeExtension_X1(ANDI_IMM8_OPCODE_X1) | FNOP_X0
 255 
 256 #define SHLI_X1 \
 257         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
 258         create_ShiftOpcodeExtension_X1(SHLI_SHIFT_OPCODE_X1) | FNOP_X0
 259 
 260 #define SHL_X1 \
 261         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
 262         create_RRROpcodeExtension_X1(SHL_RRR_0_OPCODE_X1) | FNOP_X0
 263 
 264 #define SHRSI_X1 \
 265         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
 266         create_ShiftOpcodeExtension_X1(SHRSI_SHIFT_OPCODE_X1) | FNOP_X0
 267 
 268 #define SHRS_X1 \
 269         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
 270         create_RRROpcodeExtension_X1(SHRS_RRR_0_OPCODE_X1) | FNOP_X0
 271 
 272 #define SHRUI_X1 \
 273         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
 274         create_ShiftOpcodeExtension_X1(SHRUI_SHIFT_OPCODE_X1) | FNOP_X0
 275 
 276 #define SHRU_X1 \
 277         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
 278         create_RRROpcodeExtension_X1(SHRU_RRR_0_OPCODE_X1) | FNOP_X0
 279 
 280 #define BEQZ_X1 \
 281         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(BRANCH_OPCODE_X1) | \
 282         create_BrType_X1(BEQZ_BRANCH_OPCODE_X1) | FNOP_X0
 283 
 284 #define BNEZ_X1 \
 285         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(BRANCH_OPCODE_X1) | \
 286         create_BrType_X1(BNEZ_BRANCH_OPCODE_X1) | FNOP_X0
 287 
 288 #define J_X1 \
 289         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(JUMP_OPCODE_X1) | \
 290         create_JumpOpcodeExtension_X1(J_JUMP_OPCODE_X1) | FNOP_X0
 291 
 292 #define JAL_X1 \
 293         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(JUMP_OPCODE_X1) | \
 294         create_JumpOpcodeExtension_X1(JAL_JUMP_OPCODE_X1) | FNOP_X0
 295 
 296 #define DEST_X0(x) create_Dest_X0(x)
 297 #define SRCA_X0(x) create_SrcA_X0(x)
 298 #define SRCB_X0(x) create_SrcB_X0(x)
 299 #define DEST_X1(x) create_Dest_X1(x)
 300 #define SRCA_X1(x) create_SrcA_X1(x)
 301 #define SRCB_X1(x) create_SrcB_X1(x)
 302 #define IMM16_X1(x) create_Imm16_X1(x)
 303 #define IMM8_X1(x) create_Imm8_X1(x)
 304 #define BFSTART_X0(x) create_BFStart_X0(x)
 305 #define BFEND_X0(x) create_BFEnd_X0(x)
 306 #define SHIFTIMM_X1(x) create_ShAmt_X1(x)
 307 #define JOFF_X1(x) create_JumpOff_X1(x)
 308 #define BOFF_X1(x) create_BrOff_X1(x)
 309 
 310 static SLJIT_CONST tilegx_mnemonic data_transfer_insts[16] = {
 311         /* u w s */ TILEGX_OPC_ST   /* st */,
 312         /* u w l */ TILEGX_OPC_LD   /* ld */,
 313         /* u b s */ TILEGX_OPC_ST1  /* st1 */,
 314         /* u b l */ TILEGX_OPC_LD1U /* ld1u */,
 315         /* u h s */ TILEGX_OPC_ST2  /* st2 */,
 316         /* u h l */ TILEGX_OPC_LD2U /* ld2u */,
 317         /* u i s */ TILEGX_OPC_ST4  /* st4 */,
 318         /* u i l */ TILEGX_OPC_LD4U /* ld4u */,
 319         /* s w s */ TILEGX_OPC_ST   /* st */,
 320         /* s w l */ TILEGX_OPC_LD   /* ld */,
 321         /* s b s */ TILEGX_OPC_ST1  /* st1 */,
 322         /* s b l */ TILEGX_OPC_LD1S /* ld1s */,
 323         /* s h s */ TILEGX_OPC_ST2  /* st2 */,
 324         /* s h l */ TILEGX_OPC_LD2S /* ld2s */,
 325         /* s i s */ TILEGX_OPC_ST4  /* st4 */,
 326         /* s i l */ TILEGX_OPC_LD4S /* ld4s */,
 327 };
 328 
 329 #ifdef TILEGX_JIT_DEBUG
 330 static sljit_si push_inst_debug(struct sljit_compiler *compiler, sljit_ins ins, int line)
 331 {
 332         sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
 333         FAIL_IF(!ptr);
 334         *ptr = ins;
 335         compiler->size++;
 336         printf("|%04d|S0|:\t\t", line);
 337         print_insn_tilegx(ptr);
 338         return SLJIT_SUCCESS;
 339 }
 340 
 341 static sljit_si push_inst_nodebug(struct sljit_compiler *compiler, sljit_ins ins)
 342 {
 343         sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
 344         FAIL_IF(!ptr);
 345         *ptr = ins;
 346         compiler->size++;
 347         return SLJIT_SUCCESS;
 348 }
 349 
 350 #define push_inst(a, b) push_inst_debug(a, b, __LINE__)
 351 #else
 352 static sljit_si push_inst(struct sljit_compiler *compiler, sljit_ins ins)
 353 {
 354         sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
 355         FAIL_IF(!ptr);
 356         *ptr = ins;
 357         compiler->size++;
 358         return SLJIT_SUCCESS;
 359 }
 360 #endif
 361 
 362 #define BUNDLE_FORMAT_MASK(p0, p1, p2) \
 363         ((p0) | ((p1) << 8) | ((p2) << 16))
 364 
 365 #define BUNDLE_FORMAT(p0, p1, p2) \
 366         { \
 367                 { \
 368                         (tilegx_pipeline)(p0), \
 369                         (tilegx_pipeline)(p1), \
 370                         (tilegx_pipeline)(p2) \
 371                 }, \
 372                 BUNDLE_FORMAT_MASK(1 << (p0), 1 << (p1), (1 << (p2))) \
 373         }
 374 
 375 #define NO_PIPELINE TILEGX_NUM_PIPELINE_ENCODINGS
 376 
 377 #define tilegx_is_x_pipeline(p) ((int)(p) <= (int)TILEGX_PIPELINE_X1)
 378 
 379 #define PI(encoding) \
 380         push_inst(compiler, encoding)
 381 
 382 #define PB3(opcode, dst, srca, srcb) \
 383         push_3_buffer(compiler, opcode, dst, srca, srcb, __LINE__)
 384 
 385 #define PB2(opcode, dst, src) \
 386         push_2_buffer(compiler, opcode, dst, src, __LINE__)
 387 
 388 #define JR(reg) \
 389         push_jr_buffer(compiler, TILEGX_OPC_JR, reg, __LINE__)
 390 
 391 #define ADD(dst, srca, srcb) \
 392         push_3_buffer(compiler, TILEGX_OPC_ADD, dst, srca, srcb, __LINE__)
 393 
 394 #define SUB(dst, srca, srcb) \
 395         push_3_buffer(compiler, TILEGX_OPC_SUB, dst, srca, srcb, __LINE__)
 396 
 397 #define MUL(dst, srca, srcb) \
 398         push_3_buffer(compiler, TILEGX_OPC_MULX, dst, srca, srcb, __LINE__)
 399 
 400 #define NOR(dst, srca, srcb) \
 401         push_3_buffer(compiler, TILEGX_OPC_NOR, dst, srca, srcb, __LINE__)
 402 
 403 #define OR(dst, srca, srcb) \
 404         push_3_buffer(compiler, TILEGX_OPC_OR, dst, srca, srcb, __LINE__)
 405 
 406 #define XOR(dst, srca, srcb) \
 407         push_3_buffer(compiler, TILEGX_OPC_XOR, dst, srca, srcb, __LINE__)
 408 
 409 #define AND(dst, srca, srcb) \
 410         push_3_buffer(compiler, TILEGX_OPC_AND, dst, srca, srcb, __LINE__)
 411 
 412 #define CLZ(dst, src) \
 413         push_2_buffer(compiler, TILEGX_OPC_CLZ, dst, src, __LINE__)
 414 
 415 #define SHLI(dst, srca, srcb) \
 416         push_3_buffer(compiler, TILEGX_OPC_SHLI, dst, srca, srcb, __LINE__)
 417 
 418 #define SHRUI(dst, srca, imm) \
 419         push_3_buffer(compiler, TILEGX_OPC_SHRUI, dst, srca, imm, __LINE__)
 420 
 421 #define XORI(dst, srca, imm) \
 422         push_3_buffer(compiler, TILEGX_OPC_XORI, dst, srca, imm, __LINE__)
 423 
 424 #define ORI(dst, srca, imm) \
 425         push_3_buffer(compiler, TILEGX_OPC_ORI, dst, srca, imm, __LINE__)
 426 
 427 #define CMPLTU(dst, srca, srcb) \
 428         push_3_buffer(compiler, TILEGX_OPC_CMPLTU, dst, srca, srcb, __LINE__)
 429 
 430 #define CMPLTS(dst, srca, srcb) \
 431         push_3_buffer(compiler, TILEGX_OPC_CMPLTS, dst, srca, srcb, __LINE__)
 432 
 433 #define CMPLTUI(dst, srca, imm) \
 434         push_3_buffer(compiler, TILEGX_OPC_CMPLTUI, dst, srca, imm, __LINE__)
 435 
 436 #define CMOVNEZ(dst, srca, srcb) \
 437         push_3_buffer(compiler, TILEGX_OPC_CMOVNEZ, dst, srca, srcb, __LINE__)
 438 
 439 #define CMOVEQZ(dst, srca, srcb) \
 440         push_3_buffer(compiler, TILEGX_OPC_CMOVEQZ, dst, srca, srcb, __LINE__)
 441 
 442 #define ADDLI(dst, srca, srcb) \
 443         push_3_buffer(compiler, TILEGX_OPC_ADDLI, dst, srca, srcb, __LINE__)
 444 
 445 #define SHL16INSLI(dst, srca, srcb) \
 446         push_3_buffer(compiler, TILEGX_OPC_SHL16INSLI, dst, srca, srcb, __LINE__)
 447 
 448 #define LD_ADD(dst, addr, adjust) \
 449         push_3_buffer(compiler, TILEGX_OPC_LD_ADD, dst, addr, adjust, __LINE__)
 450 
 451 #define ST_ADD(src, addr, adjust) \
 452         push_3_buffer(compiler, TILEGX_OPC_ST_ADD, src, addr, adjust, __LINE__)
 453 
 454 #define LD(dst, addr) \
 455         push_2_buffer(compiler, TILEGX_OPC_LD, dst, addr, __LINE__)
 456 
 457 #define BFEXTU(dst, src, start, end) \
 458         push_4_buffer(compiler, TILEGX_OPC_BFEXTU, dst, src, start, end, __LINE__)
 459 
 460 #define BFEXTS(dst, src, start, end) \
 461         push_4_buffer(compiler, TILEGX_OPC_BFEXTS, dst, src, start, end, __LINE__)
 462 
 463 #define ADD_SOLO(dest, srca, srcb) \
 464         push_inst(compiler, ADD_X1 | DEST_X1(dest) | SRCA_X1(srca) | SRCB_X1(srcb))
 465 
 466 #define ADDI_SOLO(dest, srca, imm) \
 467         push_inst(compiler, ADDI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM8_X1(imm))
 468 
 469 #define ADDLI_SOLO(dest, srca, imm) \
 470         push_inst(compiler, ADDLI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM16_X1(imm))
 471 
 472 #define SHL16INSLI_SOLO(dest, srca, imm) \
 473         push_inst(compiler, SHL16INSLI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM16_X1(imm))
 474 
 475 #define JALR_SOLO(reg) \
 476         push_inst(compiler, JALR_X1 | SRCA_X1(reg))
 477 
 478 #define JR_SOLO(reg) \
 479         push_inst(compiler, JR_X1 | SRCA_X1(reg))
 480 
 481 struct Format {
 482         /* Mapping of bundle issue slot to assigned pipe. */
 483         tilegx_pipeline pipe[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE];
 484 
 485         /* Mask of pipes used by this bundle. */
 486         unsigned int pipe_mask;
 487 };
 488 
 489 const struct Format formats[] =
 490 {
 491         /* In Y format we must always have something in Y2, since it has
 492         * no fnop, so this conveys that Y2 must always be used. */
 493         BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2, NO_PIPELINE),
 494         BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2, NO_PIPELINE),
 495         BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0, NO_PIPELINE),
 496         BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1, NO_PIPELINE),
 497 
 498         /* Y format has three instructions. */
 499         BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2),
 500         BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1),
 501         BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2),
 502         BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0),
 503         BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y1),
 504         BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y0),
 505 
 506         /* X format has only two instructions. */
 507         BUNDLE_FORMAT(TILEGX_PIPELINE_X0, TILEGX_PIPELINE_X1, NO_PIPELINE),
 508         BUNDLE_FORMAT(TILEGX_PIPELINE_X1, TILEGX_PIPELINE_X0, NO_PIPELINE)
 509 };
 510 
 511 
 512 struct jit_instr inst_buf[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE];
 513 unsigned long inst_buf_index;
 514 
 515 tilegx_pipeline get_any_valid_pipe(const struct tilegx_opcode* opcode)
 516 {
 517         /* FIXME: tile: we could pregenerate this. */
 518         int pipe;
 519         for (pipe = 0; ((opcode->pipes & (1 << pipe)) == 0 && pipe < TILEGX_NUM_PIPELINE_ENCODINGS); pipe++)
 520                 ;
 521         return (tilegx_pipeline)(pipe);
 522 }
 523 
 524 void insert_nop(tilegx_mnemonic opc, int line)
 525 {
 526         const struct tilegx_opcode* opcode = NULL;
 527 
 528         memmove(&inst_buf[1], &inst_buf[0], inst_buf_index * sizeof inst_buf[0]);
 529 
 530         opcode = &tilegx_opcodes[opc];
 531         inst_buf[0].opcode = opcode;
 532         inst_buf[0].pipe = get_any_valid_pipe(opcode);
 533         inst_buf[0].input_registers = 0;
 534         inst_buf[0].output_registers = 0;
 535         inst_buf[0].line = line;
 536         ++inst_buf_index;
 537 }
 538 
 539 const struct Format* compute_format()
 540 {
 541         unsigned int compatible_pipes = BUNDLE_FORMAT_MASK(
 542                 inst_buf[0].opcode->pipes,
 543                 inst_buf[1].opcode->pipes,
 544                 (inst_buf_index == 3 ? inst_buf[2].opcode->pipes : (1 << NO_PIPELINE)));
 545 
 546         const struct Format* match = NULL;
 547         const struct Format *b = NULL;
 548         unsigned int i;
 549         for (i = 0; i < sizeof formats / sizeof formats[0]; i++) {
 550                 b = &formats[i];
 551                 if ((b->pipe_mask & compatible_pipes) == b->pipe_mask) {
 552                         match = b;
 553                         break;
 554                 }
 555         }
 556 
 557         return match;
 558 }
 559 
 560 sljit_si assign_pipes()
 561 {
 562         unsigned long output_registers = 0;
 563         unsigned int i = 0;
 564 
 565         if (inst_buf_index == 1) {
 566                 tilegx_mnemonic opc = inst_buf[0].opcode->can_bundle
 567                                         ? TILEGX_OPC_FNOP : TILEGX_OPC_NOP;
 568                 insert_nop(opc, __LINE__);
 569         }
 570 
 571         const struct Format* match = compute_format();
 572 
 573         if (match == NULL)
 574                 return -1;
 575 
 576         for (i = 0; i < inst_buf_index; i++) {
 577 
 578                 if ((i > 0) && ((inst_buf[i].input_registers & output_registers) != 0))
 579                         return -1;
 580 
 581                 if ((i > 0) && ((inst_buf[i].output_registers & output_registers) != 0))
 582                         return -1;
 583 
 584                 /* Don't include Rzero in the match set, to avoid triggering
 585                    needlessly on 'prefetch' instrs. */
 586 
 587                 output_registers |= inst_buf[i].output_registers & 0xFFFFFFFFFFFFFFL;
 588 
 589                 inst_buf[i].pipe = match->pipe[i];
 590         }
 591 
 592         /* If only 2 instrs, and in Y-mode, insert a nop. */
 593         if (inst_buf_index == 2 && !tilegx_is_x_pipeline(match->pipe[0])) {
 594                 insert_nop(TILEGX_OPC_FNOP, __LINE__);
 595 
 596                 /* Select the yet unassigned pipe. */
 597                 tilegx_pipeline pipe = (tilegx_pipeline)(((TILEGX_PIPELINE_Y0
 598                                         + TILEGX_PIPELINE_Y1 + TILEGX_PIPELINE_Y2)
 599                                         - (inst_buf[1].pipe + inst_buf[2].pipe)));
 600 
 601                 inst_buf[0].pipe = pipe;
 602         }
 603 
 604         return 0;
 605 }
 606 
 607 tilegx_bundle_bits get_bundle_bit(struct jit_instr *inst)
 608 {
 609         int i, val;
 610         const struct tilegx_opcode* opcode = inst->opcode;
 611         tilegx_bundle_bits bits = opcode->fixed_bit_values[inst->pipe];
 612 
 613         const struct tilegx_operand* operand = NULL;
 614         for (i = 0; i < opcode->num_operands; i++) {
 615                 operand = &tilegx_operands[opcode->operands[inst->pipe][i]];
 616                 val = inst->operand_value[i];
 617 
 618                 bits |= operand->insert(val);
 619         }
 620 
 621         return bits;
 622 }
 623 
 624 static sljit_si update_buffer(struct sljit_compiler *compiler)
 625 {
 626         int i;
 627         int orig_index = inst_buf_index;
 628         struct jit_instr inst0 = inst_buf[0];
 629         struct jit_instr inst1 = inst_buf[1];
 630         struct jit_instr inst2 = inst_buf[2];
 631         tilegx_bundle_bits bits = 0;
 632 
 633         /* If the bundle is valid as is, perform the encoding and return 1. */
 634         if (assign_pipes() == 0) {
 635                 for (i = 0; i < inst_buf_index; i++) {
 636                         bits |= get_bundle_bit(inst_buf + i);
 637 #ifdef TILEGX_JIT_DEBUG
 638                         printf("|%04d", inst_buf[i].line);
 639 #endif
 640                 }
 641 #ifdef TILEGX_JIT_DEBUG
 642                 if (inst_buf_index == 3)
 643                         printf("|M0|:\t");
 644                 else
 645                         printf("|M0|:\t\t");
 646                 print_insn_tilegx(&bits);
 647 #endif
 648 
 649                 inst_buf_index = 0;
 650 
 651 #ifdef TILEGX_JIT_DEBUG
 652                 return push_inst_nodebug(compiler, bits);
 653 #else
 654                 return push_inst(compiler, bits);
 655 #endif
 656         }
 657 
 658         /* If the bundle is invalid, split it in two. First encode the first two
 659            (or possibly 1) instructions, and then the last, separately. Note that
 660            assign_pipes may have re-ordered the instrs (by inserting no-ops in
 661            lower slots) so we need to reset them. */
 662 
 663         inst_buf_index = orig_index - 1;
 664         inst_buf[0] = inst0;
 665         inst_buf[1] = inst1;
 666         inst_buf[2] = inst2;
 667         if (assign_pipes() == 0) {
 668                 for (i = 0; i < inst_buf_index; i++) {
 669                         bits |= get_bundle_bit(inst_buf + i);
 670 #ifdef TILEGX_JIT_DEBUG
 671                         printf("|%04d", inst_buf[i].line);
 672 #endif
 673                 }
 674 
 675 #ifdef TILEGX_JIT_DEBUG
 676                 if (inst_buf_index == 3)
 677                         printf("|M1|:\t");
 678                 else
 679                         printf("|M1|:\t\t");
 680                 print_insn_tilegx(&bits);
 681 #endif
 682 
 683                 if ((orig_index - 1) == 2) {
 684                         inst_buf[0] = inst2;
 685                         inst_buf_index = 1;
 686                 } else if ((orig_index - 1) == 1) {
 687                         inst_buf[0] = inst1;
 688                         inst_buf_index = 1;
 689                 } else
 690                         SLJIT_ASSERT_STOP();
 691 
 692 #ifdef TILEGX_JIT_DEBUG
 693                 return push_inst_nodebug(compiler, bits);
 694 #else
 695                 return push_inst(compiler, bits);
 696 #endif
 697         } else {
 698                 /* We had 3 instrs of which the first 2 can't live in the same bundle.
 699                    Split those two. Note that we don't try to then combine the second
 700                    and third instr into a single bundle.  First instruction: */
 701                 inst_buf_index = 1;
 702                 inst_buf[0] = inst0;
 703                 inst_buf[1] = inst1;
 704                 inst_buf[2] = inst2;
 705                 if (assign_pipes() == 0) {
 706                         for (i = 0; i < inst_buf_index; i++) {
 707                                 bits |= get_bundle_bit(inst_buf + i);
 708 #ifdef TILEGX_JIT_DEBUG
 709                                 printf("|%04d", inst_buf[i].line);
 710 #endif
 711                         }
 712 
 713 #ifdef TILEGX_JIT_DEBUG
 714                         if (inst_buf_index == 3)
 715                                 printf("|M2|:\t");
 716                         else
 717                                 printf("|M2|:\t\t");
 718                         print_insn_tilegx(&bits);
 719 #endif
 720 
 721                         inst_buf[0] = inst1;
 722                         inst_buf[1] = inst2;
 723                         inst_buf_index = orig_index - 1;
 724 #ifdef TILEGX_JIT_DEBUG
 725                         return push_inst_nodebug(compiler, bits);
 726 #else
 727                         return push_inst(compiler, bits);
 728 #endif
 729                 } else
 730                         SLJIT_ASSERT_STOP();
 731         }
 732 
 733         SLJIT_ASSERT_STOP();
 734 }
 735 
 736 static sljit_si flush_buffer(struct sljit_compiler *compiler)
 737 {
 738         while (inst_buf_index != 0) {
 739                 FAIL_IF(update_buffer(compiler));
 740         }
 741         return SLJIT_SUCCESS;
 742 }
 743 
 744 static sljit_si push_4_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int op2, int op3, int line)
 745 {
 746         if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
 747                 FAIL_IF(update_buffer(compiler));
 748 
 749         const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
 750         inst_buf[inst_buf_index].opcode = opcode;
 751         inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
 752         inst_buf[inst_buf_index].operand_value[0] = op0;
 753         inst_buf[inst_buf_index].operand_value[1] = op1;
 754         inst_buf[inst_buf_index].operand_value[2] = op2;
 755         inst_buf[inst_buf_index].operand_value[3] = op3;
 756         inst_buf[inst_buf_index].input_registers = 1L << op1;
 757         inst_buf[inst_buf_index].output_registers = 1L << op0;
 758         inst_buf[inst_buf_index].line = line;
 759         inst_buf_index++;
 760 
 761         return SLJIT_SUCCESS;
 762 }
 763 
 764 static sljit_si push_3_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int op2, int line)
 765 {
 766         if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
 767                 FAIL_IF(update_buffer(compiler));
 768 
 769         const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
 770         inst_buf[inst_buf_index].opcode = opcode;
 771         inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
 772         inst_buf[inst_buf_index].operand_value[0] = op0;
 773         inst_buf[inst_buf_index].operand_value[1] = op1;
 774         inst_buf[inst_buf_index].operand_value[2] = op2;
 775         inst_buf[inst_buf_index].line = line;
 776 
 777         switch (opc) {
 778         case TILEGX_OPC_ST_ADD:
 779                 inst_buf[inst_buf_index].input_registers = (1L << op0) | (1L << op1);
 780                 inst_buf[inst_buf_index].output_registers = 1L << op0;
 781                 break;
 782         case TILEGX_OPC_LD_ADD:
 783                 inst_buf[inst_buf_index].input_registers = 1L << op1;
 784                 inst_buf[inst_buf_index].output_registers = (1L << op0) | (1L << op1);
 785                 break;
 786         case TILEGX_OPC_ADD:
 787         case TILEGX_OPC_AND:
 788         case TILEGX_OPC_SUB:
 789         case TILEGX_OPC_MULX:
 790         case TILEGX_OPC_OR:
 791         case TILEGX_OPC_XOR:
 792         case TILEGX_OPC_NOR:
 793         case TILEGX_OPC_SHL:
 794         case TILEGX_OPC_SHRU:
 795         case TILEGX_OPC_SHRS:
 796         case TILEGX_OPC_CMPLTU:
 797         case TILEGX_OPC_CMPLTS:
 798         case TILEGX_OPC_CMOVEQZ:
 799         case TILEGX_OPC_CMOVNEZ:
 800                 inst_buf[inst_buf_index].input_registers = (1L << op1) | (1L << op2);
 801                 inst_buf[inst_buf_index].output_registers = 1L << op0;
 802                 break;
 803         case TILEGX_OPC_ADDLI:
 804         case TILEGX_OPC_XORI:
 805         case TILEGX_OPC_ORI:
 806         case TILEGX_OPC_SHLI:
 807         case TILEGX_OPC_SHRUI:
 808         case TILEGX_OPC_SHRSI:
 809         case TILEGX_OPC_SHL16INSLI:
 810         case TILEGX_OPC_CMPLTUI:
 811         case TILEGX_OPC_CMPLTSI:
 812                 inst_buf[inst_buf_index].input_registers = 1L << op1;
 813                 inst_buf[inst_buf_index].output_registers = 1L << op0;
 814                 break;
 815         default:
 816                 printf("unrecoginzed opc: %s\n", opcode->name);
 817                 SLJIT_ASSERT_STOP();
 818         }
 819 
 820         inst_buf_index++;
 821 
 822         return SLJIT_SUCCESS;
 823 }
 824 
 825 static sljit_si push_2_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int line)
 826 {
 827         if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
 828                 FAIL_IF(update_buffer(compiler));
 829 
 830         const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
 831         inst_buf[inst_buf_index].opcode = opcode;
 832         inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
 833         inst_buf[inst_buf_index].operand_value[0] = op0;
 834         inst_buf[inst_buf_index].operand_value[1] = op1;
 835         inst_buf[inst_buf_index].line = line;
 836 
 837         switch (opc) {
 838         case TILEGX_OPC_BEQZ:
 839         case TILEGX_OPC_BNEZ:
 840                 inst_buf[inst_buf_index].input_registers = 1L << op0;
 841                 break;
 842         case TILEGX_OPC_ST:
 843         case TILEGX_OPC_ST1:
 844         case TILEGX_OPC_ST2:
 845         case TILEGX_OPC_ST4:
 846                 inst_buf[inst_buf_index].input_registers = (1L << op0) | (1L << op1);
 847                 inst_buf[inst_buf_index].output_registers = 0;
 848                 break;
 849         case TILEGX_OPC_CLZ:
 850         case TILEGX_OPC_LD:
 851         case TILEGX_OPC_LD1U:
 852         case TILEGX_OPC_LD1S:
 853         case TILEGX_OPC_LD2U:
 854         case TILEGX_OPC_LD2S:
 855         case TILEGX_OPC_LD4U:
 856         case TILEGX_OPC_LD4S:
 857                 inst_buf[inst_buf_index].input_registers = 1L << op1;
 858                 inst_buf[inst_buf_index].output_registers = 1L << op0;
 859                 break;
 860         default:
 861                 printf("unrecoginzed opc: %s\n", opcode->name);
 862                 SLJIT_ASSERT_STOP();
 863         }
 864 
 865         inst_buf_index++;
 866 
 867         return SLJIT_SUCCESS;
 868 }
 869 
 870 static sljit_si push_0_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int line)
 871 {
 872         if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
 873                 FAIL_IF(update_buffer(compiler));
 874 
 875         const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
 876         inst_buf[inst_buf_index].opcode = opcode;
 877         inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
 878         inst_buf[inst_buf_index].input_registers = 0;
 879         inst_buf[inst_buf_index].output_registers = 0;
 880         inst_buf[inst_buf_index].line = line;
 881         inst_buf_index++;
 882 
 883         return SLJIT_SUCCESS;
 884 }
 885 
 886 static sljit_si push_jr_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int line)
 887 {
 888         if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
 889                 FAIL_IF(update_buffer(compiler));
 890 
 891         const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
 892         inst_buf[inst_buf_index].opcode = opcode;
 893         inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
 894         inst_buf[inst_buf_index].operand_value[0] = op0;
 895         inst_buf[inst_buf_index].input_registers = 1L << op0;
 896         inst_buf[inst_buf_index].output_registers = 0;
 897         inst_buf[inst_buf_index].line = line;
 898         inst_buf_index++;
 899  
 900         return flush_buffer(compiler);
 901 }
 902 
 903 static SLJIT_INLINE sljit_ins * detect_jump_type(struct sljit_jump *jump, sljit_ins *code_ptr, sljit_ins *code)
 904 {
 905         sljit_sw diff;
 906         sljit_uw target_addr;
 907         sljit_ins *inst;
 908 
 909         if (jump->flags & SLJIT_REWRITABLE_JUMP)
 910                 return code_ptr;
 911 
 912         if (jump->flags & JUMP_ADDR)
 913                 target_addr = jump->u.target;
 914         else {
 915                 SLJIT_ASSERT(jump->flags & JUMP_LABEL);
 916                 target_addr = (sljit_uw)(code + jump->u.label->size);
 917         }
 918 
 919         inst = (sljit_ins *)jump->addr;
 920         if (jump->flags & IS_COND)
 921                 inst--;
 922 
 923         diff = ((sljit_sw) target_addr - (sljit_sw) inst) >> 3;
 924         if (diff <= SIMM_17BIT_MAX && diff >= SIMM_17BIT_MIN) {
 925                 jump->flags |= PATCH_B;
 926 
 927                 if (!(jump->flags & IS_COND)) {
 928                         if (jump->flags & IS_JAL) {
 929                                 jump->flags &= ~(PATCH_B);
 930                                 jump->flags |= PATCH_J;
 931                                 inst[0] = JAL_X1;
 932 
 933 #ifdef TILEGX_JIT_DEBUG
 934                                 printf("[runtime relocate]%04d:\t", __LINE__);
 935                                 print_insn_tilegx(inst);
 936 #endif
 937                         } else {
 938                                 inst[0] = BEQZ_X1 | SRCA_X1(ZERO);
 939 
 940 #ifdef TILEGX_JIT_DEBUG
 941                                 printf("[runtime relocate]%04d:\t", __LINE__);
 942                                 print_insn_tilegx(inst);
 943 #endif
 944                         }
 945 
 946                         return inst;
 947                 }
 948 
 949                 inst[0] = inst[0] ^ (0x7L << 55);
 950 
 951 #ifdef TILEGX_JIT_DEBUG
 952                 printf("[runtime relocate]%04d:\t", __LINE__);
 953                 print_insn_tilegx(inst);
 954 #endif
 955                 jump->addr -= sizeof(sljit_ins);
 956                 return inst;
 957         }
 958 
 959         if (jump->flags & IS_COND) {
 960                 if ((target_addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL)) {
 961                         jump->flags |= PATCH_J;
 962                         inst[0] = (inst[0] & ~(BOFF_X1(-1))) | BOFF_X1(2);
 963                         inst[1] = J_X1;
 964                         return inst + 1;
 965                 }
 966 
 967                 return code_ptr;
 968         }
 969 
 970         if ((target_addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL)) {
 971                 jump->flags |= PATCH_J;
 972 
 973                 if (jump->flags & IS_JAL) {
 974                         inst[0] = JAL_X1;
 975 
 976 #ifdef TILEGX_JIT_DEBUG
 977                         printf("[runtime relocate]%04d:\t", __LINE__);
 978                         print_insn_tilegx(inst);
 979 #endif
 980 
 981                 } else {
 982                         inst[0] = J_X1;
 983 
 984 #ifdef TILEGX_JIT_DEBUG
 985                         printf("[runtime relocate]%04d:\t", __LINE__);
 986                         print_insn_tilegx(inst);
 987 #endif
 988                 }
 989 
 990                 return inst;
 991         }
 992 
 993         return code_ptr;
 994 }
 995 
 996 SLJIT_API_FUNC_ATTRIBUTE void * sljit_generate_code(struct sljit_compiler *compiler)
 997 {
 998         struct sljit_memory_fragment *buf;
 999         sljit_ins *code;
1000         sljit_ins *code_ptr;
1001         sljit_ins *buf_ptr;
1002         sljit_ins *buf_end;
1003         sljit_uw word_count;
1004         sljit_uw addr;
1005 
1006         struct sljit_label *label;
1007         struct sljit_jump *jump;
1008         struct sljit_const *const_;
1009 
1010         CHECK_ERROR_PTR();
1011         CHECK_PTR(check_sljit_generate_code(compiler));
1012         reverse_buf(compiler);
1013 
1014         code = (sljit_ins *)SLJIT_MALLOC_EXEC(compiler->size * sizeof(sljit_ins));
1015         PTR_FAIL_WITH_EXEC_IF(code);
1016         buf = compiler->buf;
1017 
1018         code_ptr = code;
1019         word_count = 0;
1020         label = compiler->labels;
1021         jump = compiler->jumps;
1022         const_ = compiler->consts;
1023         do {
1024                 buf_ptr = (sljit_ins *)buf->memory;
1025                 buf_end = buf_ptr + (buf->used_size >> 3);
1026                 do {
1027                         *code_ptr = *buf_ptr++;
1028                         SLJIT_ASSERT(!label || label->size >= word_count);
1029                         SLJIT_ASSERT(!jump || jump->addr >= word_count);
1030                         SLJIT_ASSERT(!const_ || const_->addr >= word_count);
1031                         /* These structures are ordered by their address. */
1032                         if (label && label->size == word_count) {
1033                                 /* Just recording the address. */
1034                                 label->addr = (sljit_uw) code_ptr;
1035                                 label->size = code_ptr - code;
1036                                 label = label->next;
1037                         }
1038 
1039                         if (jump && jump->addr == word_count) {
1040                                 if (jump->flags & IS_JAL)
1041                                         jump->addr = (sljit_uw)(code_ptr - 4);
1042                                 else
1043                                         jump->addr = (sljit_uw)(code_ptr - 3);
1044 
1045                                 code_ptr = detect_jump_type(jump, code_ptr, code);
1046                                 jump = jump->next;
1047                         }
1048 
1049                         if (const_ && const_->addr == word_count) {
1050                                 /* Just recording the address. */
1051                                 const_->addr = (sljit_uw) code_ptr;
1052                                 const_ = const_->next;
1053                         }
1054 
1055                         code_ptr++;
1056                         word_count++;
1057                 } while (buf_ptr < buf_end);
1058 
1059                 buf = buf->next;
1060         } while (buf);
1061 
1062         if (label && label->size == word_count) {
1063                 label->addr = (sljit_uw) code_ptr;
1064                 label->size = code_ptr - code;
1065                 label = label->next;
1066         }
1067 
1068         SLJIT_ASSERT(!label);
1069         SLJIT_ASSERT(!jump);
1070         SLJIT_ASSERT(!const_);
1071         SLJIT_ASSERT(code_ptr - code <= (sljit_sw)compiler->size);
1072 
1073         jump = compiler->jumps;
1074         while (jump) {
1075                 do {
1076                         addr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target;
1077                         buf_ptr = (sljit_ins *)jump->addr;
1078 
1079                         if (jump->flags & PATCH_B) {
1080                                 addr = (sljit_sw)(addr - (jump->addr)) >> 3;
1081                                 SLJIT_ASSERT((sljit_sw) addr <= SIMM_17BIT_MAX && (sljit_sw) addr >= SIMM_17BIT_MIN);
1082                                 buf_ptr[0] = (buf_ptr[0] & ~(BOFF_X1(-1))) | BOFF_X1(addr);
1083 
1084 #ifdef TILEGX_JIT_DEBUG
1085                                 printf("[runtime relocate]%04d:\t", __LINE__);
1086                                 print_insn_tilegx(buf_ptr);
1087 #endif
1088                                 break;
1089                         }
1090 
1091                         if (jump->flags & PATCH_J) {
1092                                 SLJIT_ASSERT((addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL));
1093                                 addr = (sljit_sw)(addr - (jump->addr)) >> 3;
1094                                 buf_ptr[0] = (buf_ptr[0] & ~(JOFF_X1(-1))) | JOFF_X1(addr);
1095 
1096 #ifdef TILEGX_JIT_DEBUG
1097                                 printf("[runtime relocate]%04d:\t", __LINE__);
1098                                 print_insn_tilegx(buf_ptr);
1099 #endif
1100                                 break;
1101                         }
1102 
1103                         SLJIT_ASSERT(!(jump->flags & IS_JAL));
1104 
1105                         /* Set the fields of immediate loads. */
1106                         buf_ptr[0] = (buf_ptr[0] & ~(0xFFFFL << 43)) | (((addr >> 32) & 0xFFFFL) << 43);
1107                         buf_ptr[1] = (buf_ptr[1] & ~(0xFFFFL << 43)) | (((addr >> 16) & 0xFFFFL) << 43);
1108                         buf_ptr[2] = (buf_ptr[2] & ~(0xFFFFL << 43)) | ((addr & 0xFFFFL) << 43);
1109                 } while (0);
1110 
1111                 jump = jump->next;
1112         }
1113 
1114         compiler->error = SLJIT_ERR_COMPILED;
1115         compiler->executable_size = (code_ptr - code) * sizeof(sljit_ins);
1116         SLJIT_CACHE_FLUSH(code, code_ptr);
1117         return code;
1118 }
1119 
1120 static sljit_si load_immediate(struct sljit_compiler *compiler, sljit_si dst_ar, sljit_sw imm)
1121 {
1122 
1123         if (imm <= SIMM_16BIT_MAX && imm >= SIMM_16BIT_MIN)
1124                 return ADDLI(dst_ar, ZERO, imm);
1125 
1126         if (imm <= SIMM_32BIT_MAX && imm >= SIMM_32BIT_MIN) {
1127                 FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 16));
1128                 return SHL16INSLI(dst_ar, dst_ar, imm);
1129         }
1130 
1131         if (imm <= SIMM_48BIT_MAX && imm >= SIMM_48BIT_MIN) {
1132                 FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 32));
1133                 FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
1134                 return SHL16INSLI(dst_ar, dst_ar, imm);
1135         }
1136 
1137         FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 48));
1138         FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 32));
1139         FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
1140         return SHL16INSLI(dst_ar, dst_ar, imm);
1141 }
1142 
1143 static sljit_si emit_const(struct sljit_compiler *compiler, sljit_si dst_ar, sljit_sw imm, int flush)
1144 {
1145         /* Should *not* be optimized as load_immediate, as pcre relocation
1146            mechanism will match this fixed 4-instruction pattern. */
1147         if (flush) {
1148                 FAIL_IF(ADDLI_SOLO(dst_ar, ZERO, imm >> 32));
1149                 FAIL_IF(SHL16INSLI_SOLO(dst_ar, dst_ar, imm >> 16));
1150                 return SHL16INSLI_SOLO(dst_ar, dst_ar, imm);
1151         }
1152 
1153         FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 32));
1154         FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
1155         return SHL16INSLI(dst_ar, dst_ar, imm);
1156 }
1157 
1158 static sljit_si emit_const_64(struct sljit_compiler *compiler, sljit_si dst_ar, sljit_sw imm, int flush)
1159 {
1160         /* Should *not* be optimized as load_immediate, as pcre relocation
1161            mechanism will match this fixed 4-instruction pattern. */
1162         if (flush) {
1163                 FAIL_IF(ADDLI_SOLO(reg_map[dst_ar], ZERO, imm >> 48));
1164                 FAIL_IF(SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm >> 32));
1165                 FAIL_IF(SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm >> 16));
1166                 return SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm);
1167         }
1168 
1169         FAIL_IF(ADDLI(reg_map[dst_ar], ZERO, imm >> 48));
1170         FAIL_IF(SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm >> 32));
1171         FAIL_IF(SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm >> 16));
1172         return SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm);
1173 }
1174 
1175 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_enter(struct sljit_compiler *compiler,
1176         sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
1177         sljit_si fscratches, sljit_si fsaveds, sljit_si local_size)
1178 {
1179         sljit_ins base;
1180         sljit_si i, tmp;
1181  
1182         CHECK_ERROR();
1183         CHECK(check_sljit_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size));
1184         set_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);
1185 
1186         local_size += GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1);
1187         local_size = (local_size + 7) & ~7;
1188         compiler->local_size = local_size;
1189 
1190         if (local_size <= SIMM_16BIT_MAX) {
1191                 /* Frequent case. */
1192                 FAIL_IF(ADDLI(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, -local_size));
1193                 base = SLJIT_LOCALS_REG_mapped;
1194         } else {
1195                 FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, local_size));
1196                 FAIL_IF(ADD(TMP_REG2_mapped, SLJIT_LOCALS_REG_mapped, ZERO));
1197                 FAIL_IF(SUB(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped));
1198                 base = TMP_REG2_mapped;
1199                 local_size = 0;
1200         }
1201 
1202         /* Save the return address. */
1203         FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 8));
1204         FAIL_IF(ST_ADD(ADDR_TMP_mapped, RA, -8));
1205 
1206         /* Save the S registers. */
1207         tmp = saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - saveds) : SLJIT_FIRST_SAVED_REG;
1208         for (i = SLJIT_S0; i >= tmp; i--) {
1209                 FAIL_IF(ST_ADD(ADDR_TMP_mapped, reg_map[i], -8));
1210         }
1211 
1212         /* Save the R registers that need to be reserved. */
1213         for (i = scratches; i >= SLJIT_FIRST_SAVED_REG; i--) {
1214                 FAIL_IF(ST_ADD(ADDR_TMP_mapped, reg_map[i], -8));
1215         }
1216 
1217         /* Move the arguments to S registers. */
1218         for (i = 0; i < args; i++) {
1219                 FAIL_IF(ADD(reg_map[SLJIT_S0 - i], i, ZERO));
1220         }
1221 
1222         return SLJIT_SUCCESS;
1223 }
1224 
1225 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_set_context(struct sljit_compiler *compiler,
1226         sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
1227         sljit_si fscratches, sljit_si fsaveds, sljit_si local_size)
1228 {
1229         CHECK_ERROR();
1230         CHECK(check_sljit_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size));
1231         set_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);
1232 
1233         local_size += GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1);
1234         compiler->local_size = (local_size + 7) & ~7;
1235 
1236         return SLJIT_SUCCESS;
1237 }
1238 
1239 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_return(struct sljit_compiler *compiler, sljit_si op, sljit_si src, sljit_sw srcw)
1240 {
1241         sljit_si local_size;
1242         sljit_ins base;
1243         sljit_si i, tmp;
1244         sljit_si saveds;
1245 
1246         CHECK_ERROR();
1247         CHECK(check_sljit_emit_return(compiler, op, src, srcw));
1248 
1249         FAIL_IF(emit_mov_before_return(compiler, op, src, srcw));
1250 
1251         local_size = compiler->local_size;
1252         if (local_size <= SIMM_16BIT_MAX)
1253                 base = SLJIT_LOCALS_REG_mapped;
1254         else {
1255                 FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, local_size));
1256                 FAIL_IF(ADD(TMP_REG1_mapped, SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped));
1257                 base = TMP_REG1_mapped;
1258                 local_size = 0;
1259         }
1260 
1261         /* Restore the return address. */
1262         FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 8));
1263         FAIL_IF(LD_ADD(RA, ADDR_TMP_mapped, -8));
1264 
1265         /* Restore the S registers. */
1266         saveds = compiler->saveds;
1267         tmp = saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - saveds) : SLJIT_FIRST_SAVED_REG;
1268         for (i = SLJIT_S0; i >= tmp; i--) {
1269                 FAIL_IF(LD_ADD(reg_map[i], ADDR_TMP_mapped, -8));
1270         }
1271 
1272         /* Restore the R registers that need to be reserved. */
1273         for (i = compiler->scratches; i >= SLJIT_FIRST_SAVED_REG; i--) {
1274                 FAIL_IF(LD_ADD(reg_map[i], ADDR_TMP_mapped, -8));
1275         }
1276 
1277         if (compiler->local_size <= SIMM_16BIT_MAX)
1278                 FAIL_IF(ADDLI(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, compiler->local_size));
1279         else
1280                 FAIL_IF(ADD(SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped, ZERO));
1281 
1282         return JR(RA);
1283 }
1284 
1285 /* reg_ar is an absoulute register! */
1286 
1287 /* Can perform an operation using at most 1 instruction. */
1288 static sljit_si getput_arg_fast(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg_ar, sljit_si arg, sljit_sw argw)
1289 {
1290         SLJIT_ASSERT(arg & SLJIT_MEM);
1291 
1292         if ((!(flags & WRITE_BACK) || !(arg & REG_MASK))
1293                         && !(arg & OFFS_REG_MASK) && argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
1294                 /* Works for both absoulte and relative addresses. */
1295                 if (SLJIT_UNLIKELY(flags & ARG_TEST))
1296                         return 1;
1297 
1298                 FAIL_IF(ADDLI(ADDR_TMP_mapped, reg_map[arg & REG_MASK], argw));
1299 
1300                 if (flags & LOAD_DATA)
1301                         FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, ADDR_TMP_mapped));
1302                 else
1303                         FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], ADDR_TMP_mapped, reg_ar));
1304 
1305                 return -1;
1306         }
1307 
1308         return 0;
1309 }
1310 
1311 /* See getput_arg below.
1312    Note: can_cache is called only for binary operators. Those
1313    operators always uses word arguments without write back. */
1314 static sljit_si can_cache(sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
1315 {
1316         SLJIT_ASSERT((arg & SLJIT_MEM) && (next_arg & SLJIT_MEM));
1317 
1318         /* Simple operation except for updates. */
1319         if (arg & OFFS_REG_MASK) {
1320                 argw &= 0x3;
1321                 next_argw &= 0x3;
1322                 if (argw && argw == next_argw
1323                                 && (arg == next_arg || (arg & OFFS_REG_MASK) == (next_arg & OFFS_REG_MASK)))
1324                         return 1;
1325                 return 0;
1326         }
1327 
1328         if (arg == next_arg) {
1329                 if (((next_argw - argw) <= SIMM_16BIT_MAX
1330                                 && (next_argw - argw) >= SIMM_16BIT_MIN))
1331                         return 1;
1332 
1333                 return 0;
1334         }
1335 
1336         return 0;
1337 }
1338 
1339 /* Emit the necessary instructions. See can_cache above. */
1340 static sljit_si getput_arg(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg_ar, sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
1341 {
1342         sljit_si tmp_ar, base;
1343 
1344         SLJIT_ASSERT(arg & SLJIT_MEM);
1345         if (!(next_arg & SLJIT_MEM)) {
1346                 next_arg = 0;
1347                 next_argw = 0;
1348         }
1349 
1350         if ((flags & MEM_MASK) <= GPR_REG && (flags & LOAD_DATA))
1351                 tmp_ar = reg_ar;
1352         else
1353                 tmp_ar = TMP_REG1_mapped;
1354 
1355         base = arg & REG_MASK;
1356 
1357         if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) {
1358                 argw &= 0x3;
1359 
1360                 if ((flags & WRITE_BACK) && reg_ar == reg_map[base]) {
1361                         SLJIT_ASSERT(!(flags & LOAD_DATA) && reg_map[TMP_REG1] != reg_ar);
1362                         FAIL_IF(ADD(TMP_REG1_mapped, reg_ar, ZERO));
1363                         reg_ar = TMP_REG1_mapped;
1364                 }
1365 
1366                 /* Using the cache. */
1367                 if (argw == compiler->cache_argw) {
1368                         if (!(flags & WRITE_BACK)) {
1369                                 if (arg == compiler->cache_arg) {
1370                                         if (flags & LOAD_DATA)
1371                                                 return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
1372                                         else
1373                                                 return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
1374                                 }
1375 
1376                                 if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) {
1377                                         if (arg == next_arg && argw == (next_argw & 0x3)) {
1378                                                 compiler->cache_arg = arg;
1379                                                 compiler->cache_argw = argw;
1380                                                 FAIL_IF(ADD(TMP_REG3_mapped, reg_map[base], TMP_REG3_mapped));
1381                                                 if (flags & LOAD_DATA)
1382                                                         return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
1383                                                 else
1384                                                         return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
1385                                         }
1386 
1387                                         FAIL_IF(ADD(tmp_ar, reg_map[base], TMP_REG3_mapped));
1388                                         if (flags & LOAD_DATA)
1389                                                 return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
1390                                         else
1391                                                 return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
1392                                 }
1393                         } else {
1394                                 if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) {
1395                                         FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
1396                                         if (flags & LOAD_DATA)
1397                                                 return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
1398                                         else
1399                                                 return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
1400                                 }
1401                         }
1402                 }
1403 
1404                 if (SLJIT_UNLIKELY(argw)) {
1405                         compiler->cache_arg = SLJIT_MEM | (arg & OFFS_REG_MASK);
1406                         compiler->cache_argw = argw;
1407                         FAIL_IF(SHLI(TMP_REG3_mapped, reg_map[OFFS_REG(arg)], argw));
1408                 }
1409 
1410                 if (!(flags & WRITE_BACK)) {
1411                         if (arg == next_arg && argw == (next_argw & 0x3)) {
1412                                 compiler->cache_arg = arg;
1413                                 compiler->cache_argw = argw;
1414                                 FAIL_IF(ADD(TMP_REG3_mapped, reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));
1415                                 tmp_ar = TMP_REG3_mapped;
1416                         } else
1417                                 FAIL_IF(ADD(tmp_ar, reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));
1418 
1419                         if (flags & LOAD_DATA)
1420                                 return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
1421                         else
1422                                 return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
1423                 }
1424 
1425                 FAIL_IF(ADD(reg_map[base], reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));
1426 
1427                 if (flags & LOAD_DATA)
1428                         return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
1429                 else
1430                         return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
1431         }
1432 
1433         if (SLJIT_UNLIKELY(flags & WRITE_BACK) && base) {
1434                 /* Update only applies if a base register exists. */
1435                 if (reg_ar == reg_map[base]) {
1436                         SLJIT_ASSERT(!(flags & LOAD_DATA) && TMP_REG1_mapped != reg_ar);
1437                         if (argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
1438                                 FAIL_IF(ADDLI(ADDR_TMP_mapped, reg_map[base], argw));
1439                                 if (flags & LOAD_DATA)
1440                                         FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, ADDR_TMP_mapped));
1441                                 else
1442                                         FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], ADDR_TMP_mapped, reg_ar));
1443 
1444                                 if (argw)
1445                                         return ADDLI(reg_map[base], reg_map[base], argw);
1446 
1447                                 return SLJIT_SUCCESS;
1448                         }
1449 
1450                         FAIL_IF(ADD(TMP_REG1_mapped, reg_ar, ZERO));
1451                         reg_ar = TMP_REG1_mapped;
1452                 }
1453 
1454                 if (argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
1455                         if (argw)
1456                                 FAIL_IF(ADDLI(reg_map[base], reg_map[base], argw));
1457                 } else {
1458                         if (compiler->cache_arg == SLJIT_MEM
1459                                         && argw - compiler->cache_argw <= SIMM_16BIT_MAX
1460                                         && argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
1461                                 if (argw != compiler->cache_argw) {
1462                                         FAIL_IF(ADD(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
1463                                         compiler->cache_argw = argw;
1464                                 }
1465 
1466                                 FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
1467                         } else {
1468                                 compiler->cache_arg = SLJIT_MEM;
1469                                 compiler->cache_argw = argw;
1470                                 FAIL_IF(load_immediate(compiler, TMP_REG3_mapped, argw));
1471                                 FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
1472                         }
1473                 }
1474 
1475                 if (flags & LOAD_DATA)
1476                         return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
1477                 else
1478                         return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
1479         }
1480 
1481         if (compiler->cache_arg == arg
1482                         && argw - compiler->cache_argw <= SIMM_16BIT_MAX
1483                         && argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
1484                 if (argw != compiler->cache_argw) {
1485                         FAIL_IF(ADDLI(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
1486                         compiler->cache_argw = argw;
1487                 }
1488 
1489                 if (flags & LOAD_DATA)
1490                         return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
1491                 else
1492                         return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
1493         }
1494 
1495         if (compiler->cache_arg == SLJIT_MEM
1496                         && argw - compiler->cache_argw <= SIMM_16BIT_MAX
1497                         && argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
1498                 if (argw != compiler->cache_argw)
1499                         FAIL_IF(ADDLI(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
1500         } else {
1501                 compiler->cache_arg = SLJIT_MEM;
1502                 FAIL_IF(load_immediate(compiler, TMP_REG3_mapped, argw));
1503         }
1504 
1505         compiler->cache_argw = argw;
1506 
1507         if (!base) {
1508                 if (flags & LOAD_DATA)
1509                         return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
1510                 else
1511                         return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
1512         }
1513 
1514         if (arg == next_arg
1515                         && next_argw - argw <= SIMM_16BIT_MAX
1516                         && next_argw - argw >= SIMM_16BIT_MIN) {
1517                 compiler->cache_arg = arg;
1518                 FAIL_IF(ADD(TMP_REG3_mapped, TMP_REG3_mapped, reg_map[base]));
1519                 if (flags & LOAD_DATA)
1520                         return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
1521                 else
1522                         return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
1523         }
1524 
1525         FAIL_IF(ADD(tmp_ar, TMP_REG3_mapped, reg_map[base]));
1526 
1527         if (flags & LOAD_DATA)
1528                 return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
1529         else
1530                 return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
1531 }
1532 
1533 static SLJIT_INLINE sljit_si emit_op_mem(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg_ar, sljit_si arg, sljit_sw argw)
1534 {
1535         if (getput_arg_fast(compiler, flags, reg_ar, arg, argw))
1536                 return compiler->error;
1537 
1538         compiler->cache_arg = 0;
1539         compiler->cache_argw = 0;
1540         return getput_arg(compiler, flags, reg_ar, arg, argw, 0, 0);
1541 }
1542 
1543 static SLJIT_INLINE sljit_si emit_op_mem2(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg1, sljit_sw arg1w, sljit_si arg2, sljit_sw arg2w)
1544 {
1545         if (getput_arg_fast(compiler, flags, reg, arg1, arg1w))
1546                 return compiler->error;
1547         return getput_arg(compiler, flags, reg, arg1, arg1w, arg2, arg2w);
1548 }
1549 
1550 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw)
1551 {
1552         CHECK_ERROR();
1553         CHECK(check_sljit_emit_fast_enter(compiler, dst, dstw));
1554         ADJUST_LOCAL_OFFSET(dst, dstw);
1555 
1556         /* For UNUSED dst. Uncommon, but possible. */
1557         if (dst == SLJIT_UNUSED)
1558                 return SLJIT_SUCCESS;
1559 
1560         if (FAST_IS_REG(dst))
1561                 return ADD(reg_map[dst], RA, ZERO);
1562 
1563         /* Memory. */
1564         return emit_op_mem(compiler, WORD_DATA, RA, dst, dstw);
1565 }
1566 
1567 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_si src, sljit_sw srcw)
1568 {
1569         CHECK_ERROR();
1570         CHECK(check_sljit_emit_fast_return(compiler, src, srcw));
1571         ADJUST_LOCAL_OFFSET(src, srcw);
1572 
1573         if (FAST_IS_REG(src))
1574                 FAIL_IF(ADD(RA, reg_map[src], ZERO));
1575 
1576         else if (src & SLJIT_MEM)
1577                 FAIL_IF(emit_op_mem(compiler, WORD_DATA | LOAD_DATA, RA, src, srcw));
1578 
1579         else if (src & SLJIT_IMM)
1580                 FAIL_IF(load_immediate(compiler, RA, srcw));
1581 
1582         return JR(RA);
1583 }
1584 
1585 static SLJIT_INLINE sljit_si emit_single_op(struct sljit_compiler *compiler, sljit_si op, sljit_si flags, sljit_si dst, sljit_si src1, sljit_sw src2)
1586 {
1587         sljit_si overflow_ra = 0;
1588 
1589         switch (GET_OPCODE(op)) {
1590         case SLJIT_MOV:
1591         case SLJIT_MOV_P:
1592                 SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
1593                 if (dst != src2)
1594                         return ADD(reg_map[dst], reg_map[src2], ZERO);
1595                 return SLJIT_SUCCESS;
1596 
1597         case SLJIT_MOV_UI:
1598         case SLJIT_MOV_SI:
1599                 SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
1600                 if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
1601                         if (op == SLJIT_MOV_SI)
1602                                 return BFEXTS(reg_map[dst], reg_map[src2], 0, 31);
1603 
1604                         return BFEXTU(reg_map[dst], reg_map[src2], 0, 31);
1605                 } else if (dst != src2) {
1606                         SLJIT_ASSERT(src2 == 0);
1607                         return ADD(reg_map[dst], reg_map[src2], ZERO);
1608                 }
1609 
1610                 return SLJIT_SUCCESS;
1611 
1612         case SLJIT_MOV_UB:
1613         case SLJIT_MOV_SB:
1614                 SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
1615                 if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
1616                         if (op == SLJIT_MOV_SB)
1617                                 return BFEXTS(reg_map[dst], reg_map[src2], 0, 7);
1618 
1619                         return BFEXTU(reg_map[dst], reg_map[src2], 0, 7);
1620                 } else if (dst != src2) {
1621                         SLJIT_ASSERT(src2 == 0);
1622                         return ADD(reg_map[dst], reg_map[src2], ZERO);
1623                 }
1624 
1625                 return SLJIT_SUCCESS;
1626 
1627         case SLJIT_MOV_UH:
1628         case SLJIT_MOV_SH:
1629                 SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
1630                 if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
1631                         if (op == SLJIT_MOV_SH)
1632                                 return BFEXTS(reg_map[dst], reg_map[src2], 0, 15);
1633 
1634                         return BFEXTU(reg_map[dst], reg_map[src2], 0, 15);
1635                 } else if (dst != src2) {
1636                         SLJIT_ASSERT(src2 == 0);
1637                         return ADD(reg_map[dst], reg_map[src2], ZERO);
1638                 }
1639 
1640                 return SLJIT_SUCCESS;
1641 
1642         case SLJIT_NOT:
1643                 SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
1644                 if (op & SLJIT_SET_E)
1645                         FAIL_IF(NOR(EQUAL_FLAG, reg_map[src2], reg_map[src2]));
1646                 if (CHECK_FLAGS(SLJIT_SET_E))
1647                         FAIL_IF(NOR(reg_map[dst], reg_map[src2], reg_map[src2]));
1648 
1649                 return SLJIT_SUCCESS;
1650 
1651         case SLJIT_CLZ:
1652                 SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
1653                 if (op & SLJIT_SET_E)
1654                         FAIL_IF(CLZ(EQUAL_FLAG, reg_map[src2]));
1655                 if (CHECK_FLAGS(SLJIT_SET_E))
1656                         FAIL_IF(CLZ(reg_map[dst], reg_map[src2]));
1657 
1658                 return SLJIT_SUCCESS;
1659 
1660         case SLJIT_ADD:
1661                 if (flags & SRC2_IMM) {
1662                         if (op & SLJIT_SET_O) {
1663                                 FAIL_IF(SHRUI(TMP_EREG1, reg_map[src1], 63));
1664                                 if (src2 < 0)
1665                                         FAIL_IF(XORI(TMP_EREG1, TMP_EREG1, 1));
1666                         }
1667 
1668                         if (op & SLJIT_SET_E)
1669                                 FAIL_IF(ADDLI(EQUAL_FLAG, reg_map[src1], src2));
1670 
1671                         if (op & SLJIT_SET_C) {
1672                                 if (src2 >= 0)
1673                                         FAIL_IF(ORI(ULESS_FLAG ,reg_map[src1], src2));
1674                                 else {
1675                                         FAIL_IF(ADDLI(ULESS_FLAG ,ZERO, src2));
1676                                         FAIL_IF(OR(ULESS_FLAG,reg_map[src1],ULESS_FLAG));
1677                                 }
1678                         }
1679 
1680                         /* dst may be the same as src1 or src2. */
1681                         if (CHECK_FLAGS(SLJIT_SET_E))
1682                                 FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], src2));
1683 
1684                         if (op & SLJIT_SET_O) {
1685                                 FAIL_IF(SHRUI(OVERFLOW_FLAG, reg_map[dst], 63));
1686 
1687                                 if (src2 < 0)
1688                                         FAIL_IF(XORI(OVERFLOW_FLAG, OVERFLOW_FLAG, 1));
1689                         }
1690                 } else {
1691                         if (op & SLJIT_SET_O) {
1692                                 FAIL_IF(XOR(TMP_EREG1, reg_map[src1], reg_map[src2]));
1693                                 FAIL_IF(SHRUI(TMP_EREG1, TMP_EREG1, 63));
1694 
1695                                 if (src1 != dst)
1696                                         overflow_ra = reg_map[src1];
1697                                 else if (src2 != dst)
1698                                         overflow_ra = reg_map[src2];
1699                                 else {
1700                                         /* Rare ocasion. */
1701                                         FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
1702                                         overflow_ra = TMP_EREG2;
1703                                 }
1704                         }
1705 
1706                         if (op & SLJIT_SET_E)
1707                                 FAIL_IF(ADD(EQUAL_FLAG ,reg_map[src1], reg_map[src2]));
1708 
1709                         if (op & SLJIT_SET_C)
1710                                 FAIL_IF(OR(ULESS_FLAG,reg_map[src1], reg_map[src2]));
1711 
1712                         /* dst may be the same as src1 or src2. */
1713                         if (CHECK_FLAGS(SLJIT_SET_E))
1714                                 FAIL_IF(ADD(reg_map[dst],reg_map[src1], reg_map[src2]));
1715 
1716                         if (op & SLJIT_SET_O) {
1717                                 FAIL_IF(XOR(OVERFLOW_FLAG,reg_map[dst], overflow_ra));
1718                                 FAIL_IF(SHRUI(OVERFLOW_FLAG, OVERFLOW_FLAG, 63));
1719                         }
1720                 }
1721 
1722                 /* a + b >= a | b (otherwise, the carry should be set to 1). */
1723                 if (op & SLJIT_SET_C)
1724                         FAIL_IF(CMPLTU(ULESS_FLAG ,reg_map[dst] ,ULESS_FLAG));
1725 
1726                 if (op & SLJIT_SET_O)
1727                         return CMOVNEZ(OVERFLOW_FLAG, TMP_EREG1, ZERO);
1728 
1729                 return SLJIT_SUCCESS;
1730 
1731         case SLJIT_ADDC:
1732                 if (flags & SRC2_IMM) {
1733                         if (op & SLJIT_SET_C) {
1734                                 if (src2 >= 0)
1735                                         FAIL_IF(ORI(TMP_EREG1, reg_map[src1], src2));
1736                                 else {
1737                                         FAIL_IF(ADDLI(TMP_EREG1, ZERO, src2));
1738                                         FAIL_IF(OR(TMP_EREG1, reg_map[src1], TMP_EREG1));
1739                                 }
1740                         }
1741 
1742                         FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], src2));
1743 
1744                 } else {
1745                         if (op & SLJIT_SET_C)
1746                                 FAIL_IF(OR(TMP_EREG1, reg_map[src1], reg_map[src2]));
1747 
1748                         /* dst may be the same as src1 or src2. */
1749                         FAIL_IF(ADD(reg_map[dst], reg_map[src1], reg_map[src2]));
1750                 }
1751 
1752                 if (op & SLJIT_SET_C)
1753                         FAIL_IF(CMPLTU(TMP_EREG1, reg_map[dst], TMP_EREG1));
1754 
1755                 FAIL_IF(ADD(reg_map[dst], reg_map[dst], ULESS_FLAG));
1756 
1757                 if (!(op & SLJIT_SET_C))
1758                         return SLJIT_SUCCESS;
1759 
1760                 /* Set TMP_EREG2 (dst == 0) && (ULESS_FLAG == 1). */
1761                 FAIL_IF(CMPLTUI(TMP_EREG2, reg_map[dst], 1));
1762                 FAIL_IF(AND(TMP_EREG2, TMP_EREG2, ULESS_FLAG));
1763                 /* Set carry flag. */
1764                 return OR(ULESS_FLAG, TMP_EREG2, TMP_EREG1);
1765 
1766         case SLJIT_SUB:
1767                 if ((flags & SRC2_IMM) && ((op & (SLJIT_SET_U | SLJIT_SET_S)) || src2 == SIMM_16BIT_MIN)) {
1768                         FAIL_IF(ADDLI(TMP_REG2_mapped, ZERO, src2));
1769                         src2 = TMP_REG2;
1770                         flags &= ~SRC2_IMM;
1771                 }
1772 
1773                 if (flags & SRC2_IMM) {
1774                         if (op & SLJIT_SET_O) {
1775                                 FAIL_IF(SHRUI(TMP_EREG1,reg_map[src1], 63));
1776 
1777                                 if (src2 < 0)
1778                                         FAIL_IF(XORI(TMP_EREG1, TMP_EREG1, 1));
1779 
1780                                 if (src1 != dst)
1781                                         overflow_ra = reg_map[src1];
1782                                 else {
1783                                         /* Rare ocasion. */
1784                                         FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
1785                                         overflow_ra = TMP_EREG2;
1786                                 }
1787                         }
1788 
1789                         if (op & SLJIT_SET_E)
1790                                 FAIL_IF(ADDLI(EQUAL_FLAG, reg_map[src1], -src2));
1791 
1792                         if (op & SLJIT_SET_C) {
1793                                 FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, src2));
1794                                 FAIL_IF(CMPLTU(ULESS_FLAG, reg_map[src1], ADDR_TMP_mapped));
1795                         }
1796 
1797                         /* dst may be the same as src1 or src2. */
1798                         if (CHECK_FLAGS(SLJIT_SET_E))
1799                                 FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], -src2));
1800 
1801                 } else {
1802 
1803                         if (op & SLJIT_SET_O) {
1804                                 FAIL_IF(XOR(TMP_EREG1, reg_map[src1], reg_map[src2]));
1805                                 FAIL_IF(SHRUI(TMP_EREG1, TMP_EREG1, 63));
1806 
1807                                 if (src1 != dst)
1808                                         overflow_ra = reg_map[src1];
1809                                 else {
1810                                         /* Rare ocasion. */
1811                                         FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
1812                                         overflow_ra = TMP_EREG2;
1813                                 }
1814                         }
1815 
1816                         if (op & SLJIT_SET_E)
1817                                 FAIL_IF(SUB(EQUAL_FLAG, reg_map[src1], reg_map[src2]));
1818 
1819                         if (op & (SLJIT_SET_U | SLJIT_SET_C))
1820                                 FAIL_IF(CMPLTU(ULESS_FLAG, reg_map[src1], reg_map[src2]));
1821 
1822                         if (op & SLJIT_SET_U)
1823                                 FAIL_IF(CMPLTU(UGREATER_FLAG, reg_map[src2], reg_map[src1]));
1824 
1825                         if (op & SLJIT_SET_S) {
1826                                 FAIL_IF(CMPLTS(LESS_FLAG ,reg_map[src1] ,reg_map[src2]));
1827                                 FAIL_IF(CMPLTS(GREATER_FLAG ,reg_map[src2] ,reg_map[src1]));
1828                         }
1829 
1830                         /* dst may be the same as src1 or src2. */
1831                         if (CHECK_FLAGS(SLJIT_SET_E | SLJIT_SET_U | SLJIT_SET_S | SLJIT_SET_C))
1832                                 FAIL_IF(SUB(reg_map[dst], reg_map[src1], reg_map[src2]));
1833                 }
1834 
1835                 if (op & SLJIT_SET_O) {
1836                         FAIL_IF(XOR(OVERFLOW_FLAG, reg_map[dst], overflow_ra));
1837                         FAIL_IF(SHRUI(OVERFLOW_FLAG, OVERFLOW_FLAG, 63));
1838                         return CMOVEQZ(OVERFLOW_FLAG, TMP_EREG1, ZERO);
1839                 }
1840 
1841                 return SLJIT_SUCCESS;
1842 
1843         case SLJIT_SUBC:
1844                 if ((flags & SRC2_IMM) && src2 == SIMM_16BIT_MIN) {
1845                         FAIL_IF(ADDLI(TMP_REG2_mapped, ZERO, src2));
1846                         src2 = TMP_REG2;
1847                         flags &= ~SRC2_IMM;
1848                 }
1849 
1850                 if (flags & SRC2_IMM) {
1851                         if (op & SLJIT_SET_C) {
1852                                 FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, -src2));
1853                                 FAIL_IF(CMPLTU(TMP_EREG1, reg_map[src1], ADDR_TMP_mapped));
1854                         }
1855 
1856                         /* dst may be the same as src1 or src2. */
1857                         FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], -src2));
1858 
1859                 } else {
1860                         if (op & SLJIT_SET_C)
1861                                 FAIL_IF(CMPLTU(TMP_EREG1, reg_map[src1], reg_map[src2]));
1862                                 /* dst may be the same as src1 or src2. */
1863                         FAIL_IF(SUB(reg_map[dst], reg_map[src1], reg_map[src2]));
1864                 }
1865 
1866                 if (op & SLJIT_SET_C)
1867                         FAIL_IF(CMOVEQZ(TMP_EREG1, reg_map[dst], ULESS_FLAG));
1868 
1869                 FAIL_IF(SUB(reg_map[dst], reg_map[dst], ULESS_FLAG));
1870 
1871                 if (op & SLJIT_SET_C)
1872                         FAIL_IF(ADD(ULESS_FLAG, TMP_EREG1, ZERO));
1873 
1874                 return SLJIT_SUCCESS;
1875 
1876         case SLJIT_MUL:
1877                 if (flags & SRC2_IMM) {
1878                         FAIL_IF(load_immediate(compiler, TMP_REG2_mapped, src2));
1879                         src2 = TMP_REG2;
1880                         flags &= ~SRC2_IMM;
1881                 }
1882 
1883                 FAIL_IF(MUL(reg_map[dst], reg_map[src1], reg_map[src2]));
1884 
1885                 return SLJIT_SUCCESS;
1886 
1887 #define EMIT_LOGICAL(op_imm, op_norm) \
1888         if (flags & SRC2_IMM) { \
1889                 FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, src2)); \
1890                 if (op & SLJIT_SET_E) \
1891                         FAIL_IF(push_3_buffer( \
1892                                 compiler, op_norm, EQUAL_FLAG, reg_map[src1], \
1893                                 ADDR_TMP_mapped, __LINE__)); \
1894                 if (CHECK_FLAGS(SLJIT_SET_E)) \
1895                         FAIL_IF(push_3_buffer( \
1896                                 compiler, op_norm, reg_map[dst], reg_map[src1], \
1897                                 ADDR_TMP_mapped, __LINE__)); \
1898         } else { \
1899                 if (op & SLJIT_SET_E) \
1900                         FAIL_IF(push_3_buffer( \
1901                                 compiler, op_norm, EQUAL_FLAG, reg_map[src1], \
1902                                 reg_map[src2], __LINE__)); \
1903                 if (CHECK_FLAGS(SLJIT_SET_E)) \
1904                         FAIL_IF(push_3_buffer( \
1905                                 compiler, op_norm, reg_map[dst], reg_map[src1], \
1906                                 reg_map[src2], __LINE__)); \
1907         }
1908 
1909         case SLJIT_AND:
1910                 EMIT_LOGICAL(TILEGX_OPC_ANDI, TILEGX_OPC_AND);
1911                 return SLJIT_SUCCESS;
1912 
1913         case SLJIT_OR:
1914                 EMIT_LOGICAL(TILEGX_OPC_ORI, TILEGX_OPC_OR);
1915                 return SLJIT_SUCCESS;
1916 
1917         case SLJIT_XOR:
1918                 EMIT_LOGICAL(TILEGX_OPC_XORI, TILEGX_OPC_XOR);
1919                 return SLJIT_SUCCESS;
1920 
1921 #define EMIT_SHIFT(op_imm, op_norm) \
1922         if (flags & SRC2_IMM) { \
1923                 if (op & SLJIT_SET_E) \
1924                         FAIL_IF(push_3_buffer( \
1925                                 compiler, op_imm, EQUAL_FLAG, reg_map[src1], \
1926                                 src2 & 0x3F, __LINE__)); \
1927                 if (CHECK_FLAGS(SLJIT_SET_E)) \
1928                         FAIL_IF(push_3_buffer( \
1929                                 compiler, op_imm, reg_map[dst], reg_map[src1], \
1930                                 src2 & 0x3F, __LINE__)); \
1931         } else { \
1932                 if (op & SLJIT_SET_E) \
1933                         FAIL_IF(push_3_buffer( \
1934                                 compiler, op_norm, EQUAL_FLAG, reg_map[src1], \
1935                                 reg_map[src2], __LINE__)); \
1936                 if (CHECK_FLAGS(SLJIT_SET_E)) \
1937                         FAIL_IF(push_3_buffer( \
1938                                 compiler, op_norm, reg_map[dst], reg_map[src1], \
1939                                 reg_map[src2], __LINE__)); \
1940         }
1941 
1942         case SLJIT_SHL:
1943                 EMIT_SHIFT(TILEGX_OPC_SHLI, TILEGX_OPC_SHL);
1944                 return SLJIT_SUCCESS;
1945 
1946         case SLJIT_LSHR:
1947                 EMIT_SHIFT(TILEGX_OPC_SHRUI, TILEGX_OPC_SHRU);
1948                 return SLJIT_SUCCESS;
1949 
1950         case SLJIT_ASHR:
1951                 EMIT_SHIFT(TILEGX_OPC_SHRSI, TILEGX_OPC_SHRS);
1952                 return SLJIT_SUCCESS;
1953         }
1954 
1955         SLJIT_ASSERT_STOP();
1956         return SLJIT_SUCCESS;
1957 }
1958 
1959 static sljit_si emit_op(struct sljit_compiler *compiler, sljit_si op, sljit_si flags, sljit_si dst, sljit_sw dstw, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w)
1960 {
1961         /* arg1 goes to TMP_REG1 or src reg.
1962            arg2 goes to TMP_REG2, imm or src reg.
1963            TMP_REG3 can be used for caching.
1964            result goes to TMP_REG2, so put result can use TMP_REG1 and TMP_REG3. */
1965         sljit_si dst_r = TMP_REG2;
1966         sljit_si src1_r;
1967         sljit_sw src2_r = 0;
1968         sljit_si sugg_src2_r = TMP_REG2;
1969 
1970         if (!(flags & ALT_KEEP_CACHE)) {
1971                 compiler->cache_arg = 0;
1972                 compiler->cache_argw = 0;
1973         }
1974 
1975         if (SLJIT_UNLIKELY(dst == SLJIT_UNUSED)) {
1976                 if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI && !(src2 & SLJIT_MEM))
1977                         return SLJIT_SUCCESS;
1978                 if (GET_FLAGS(op))
1979                         flags |= UNUSED_DEST;
1980         } else if (FAST_IS_REG(dst)) {
1981                 dst_r = dst;
1982                 flags |= REG_DEST;
1983                 if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
1984                         sugg_src2_r = dst_r;
1985         } else if ((dst & SLJIT_MEM) && !getput_arg_fast(compiler, flags | ARG_TEST, TMP_REG1_mapped, dst, dstw))
1986                 flags |= SLOW_DEST;
1987 
1988         if (flags & IMM_OP) {
1989                 if ((src2 & SLJIT_IMM) && src2w) {
1990                         if ((!(flags & LOGICAL_OP)
1991                                         && (src2w <= SIMM_16BIT_MAX && src2w >= SIMM_16BIT_MIN))
1992                                         || ((flags & LOGICAL_OP) && !(src2w & ~UIMM_16BIT_MAX))) {
1993                                 flags |= SRC2_IMM;
1994                                 src2_r = src2w;
1995                         }
1996                 }
1997 
1998                 if (!(flags & SRC2_IMM) && (flags & CUMULATIVE_OP) && (src1 & SLJIT_IMM) && src1w) {
1999                         if ((!(flags & LOGICAL_OP)
2000                                         && (src1w <= SIMM_16BIT_MAX && src1w >= SIMM_16BIT_MIN))
2001                                         || ((flags & LOGICAL_OP) && !(src1w & ~UIMM_16BIT_MAX))) {
2002                                 flags |= SRC2_IMM;
2003                                 src2_r = src1w;
2004 
2005                                 /* And swap arguments. */
2006                                 src1 = src2;
2007                                 src1w = src2w;
2008                                 src2 = SLJIT_IMM;
2009                                 /* src2w = src2_r unneeded. */
2010                         }
2011                 }
2012         }
2013 
2014         /* Source 1. */
2015         if (FAST_IS_REG(src1)) {
2016                 src1_r = src1;
2017                 flags |= REG1_SOURCE;
2018         } else if (src1 & SLJIT_IMM) {
2019                 if (src1w) {
2020                         FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, src1w));
2021                         src1_r = TMP_REG1;
2022                 } else
2023                         src1_r = 0;
2024         } else {
2025                 if (getput_arg_fast(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w))
2026                         FAIL_IF(compiler->error);
2027                 else
2028                         flags |= SLOW_SRC1;
2029                 src1_r = TMP_REG1;
2030         }
2031 
2032         /* Source 2. */
2033         if (FAST_IS_REG(src2)) {
2034                 src2_r = src2;
2035                 flags |= REG2_SOURCE;
2036                 if (!(flags & REG_DEST) && op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
2037                         dst_r = src2_r;
2038         } else if (src2 & SLJIT_IMM) {
2039                 if (!(flags & SRC2_IMM)) {
2040                         if (src2w) {
2041                                 FAIL_IF(load_immediate(compiler, reg_map[sugg_src2_r], src2w));
2042                                 src2_r = sugg_src2_r;
2043                         } else {
2044                                 src2_r = 0;
2045                                 if ((op >= SLJIT_MOV && op <= SLJIT_MOVU_SI) && (dst & SLJIT_MEM))
2046                                         dst_r = 0;
2047                         }
2048                 }
2049         } else {
2050                 if (getput_arg_fast(compiler, flags | LOAD_DATA, reg_map[sugg_src2_r], src2, src2w))
2051                         FAIL_IF(compiler->error);
2052                 else
2053                         flags |= SLOW_SRC2;
2054                 src2_r = sugg_src2_r;
2055         }
2056 
2057         if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) {
2058                 SLJIT_ASSERT(src2_r == TMP_REG2);
2059                 if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
2060                         FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG2_mapped, src2, src2w, src1, src1w));
2061                         FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, dst, dstw));
2062                 } else {
2063                         FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, src2, src2w));
2064                         FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG2_mapped, src2, src2w, dst, dstw));
2065                 }
2066         } else if (flags & SLOW_SRC1)
2067                 FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, dst, dstw));
2068         else if (flags & SLOW_SRC2)
2069                 FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, reg_map[sugg_src2_r], src2, src2w, dst, dstw));
2070 
2071         FAIL_IF(emit_single_op(compiler, op, flags, dst_r, src1_r, src2_r));
2072 
2073         if (dst & SLJIT_MEM) {
2074                 if (!(flags & SLOW_DEST)) {
2075                         getput_arg_fast(compiler, flags, reg_map[dst_r], dst, dstw);
2076                         return compiler->error;
2077                 }
2078 
2079                 return getput_arg(compiler, flags, reg_map[dst_r], dst, dstw, 0, 0);
2080         }
2081 
2082         return SLJIT_SUCCESS;
2083 }
2084 
2085 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw, sljit_si type)
2086 {
2087         sljit_si sugg_dst_ar, dst_ar;
2088         sljit_si flags = GET_ALL_FLAGS(op);
2089         sljit_si mem_type = (op & SLJIT_INT_OP) ? (INT_DATA | SIGNED_DATA) : WORD_DATA;
2090 
2091         CHECK_ERROR();
2092         CHECK(check_sljit_emit_op_flags(compiler, op, dst, dstw, src, srcw, type));
2093         ADJUST_LOCAL_OFFSET(dst, dstw);
2094 
2095         if (dst == SLJIT_UNUSED)
2096                 return SLJIT_SUCCESS;
2097 
2098         op = GET_OPCODE(op);
2099         if (op == SLJIT_MOV_SI || op == SLJIT_MOV_UI)
2100                 mem_type = INT_DATA | SIGNED_DATA;
2101         sugg_dst_ar = reg_map[(op < SLJIT_ADD && FAST_IS_REG(dst)) ? dst : TMP_REG2];
2102 
2103         compiler->cache_arg = 0;
2104         compiler->cache_argw = 0;
2105         if (op >= SLJIT_ADD && (src & SLJIT_MEM)) {
2106                 ADJUST_LOCAL_OFFSET(src, srcw);
2107                 FAIL_IF(emit_op_mem2(compiler, mem_type | LOAD_DATA, TMP_REG1_mapped, src, srcw, dst, dstw));
2108                 src = TMP_REG1;
2109                 srcw = 0;
2110         }
2111 
2112         switch (type & 0xff) {
2113         case SLJIT_EQUAL:
2114         case SLJIT_NOT_EQUAL:
2115                 FAIL_IF(CMPLTUI(sugg_dst_ar, EQUAL_FLAG, 1));
2116                 dst_ar = sugg_dst_ar;
2117                 break;
2118         case SLJIT_LESS:
2119         case SLJIT_GREATER_EQUAL:
2120                 dst_ar = ULESS_FLAG;
2121                 break;
2122         case SLJIT_GREATER:
2123         case SLJIT_LESS_EQUAL:
2124                 dst_ar = UGREATER_FLAG;
2125                 break;
2126         case SLJIT_SIG_LESS:
2127         case SLJIT_SIG_GREATER_EQUAL:
2128                 dst_ar = LESS_FLAG;
2129                 break;
2130         case SLJIT_SIG_GREATER:
2131         case SLJIT_SIG_LESS_EQUAL:
2132                 dst_ar = GREATER_FLAG;
2133                 break;
2134         case SLJIT_OVERFLOW:
2135         case SLJIT_NOT_OVERFLOW:
2136                 dst_ar = OVERFLOW_FLAG;
2137                 break;
2138         case SLJIT_MUL_OVERFLOW:
2139         case SLJIT_MUL_NOT_OVERFLOW:
2140                 FAIL_IF(CMPLTUI(sugg_dst_ar, OVERFLOW_FLAG, 1));
2141                 dst_ar = sugg_dst_ar;
2142                 type ^= 0x1; /* Flip type bit for the XORI below. */
2143                 break;
2144 
2145         default:
2146                 SLJIT_ASSERT_STOP();
2147                 dst_ar = sugg_dst_ar;
2148                 break;
2149         }
2150 
2151         if (type & 0x1) {
2152                 FAIL_IF(XORI(sugg_dst_ar, dst_ar, 1));
2153                 dst_ar = sugg_dst_ar;
2154         }
2155 
2156         if (op >= SLJIT_ADD) {
2157                 if (TMP_REG2_mapped != dst_ar)
2158                         FAIL_IF(ADD(TMP_REG2_mapped, dst_ar, ZERO));
2159                 return emit_op(compiler, op | flags, mem_type | CUMULATIVE_OP | LOGICAL_OP | IMM_OP | ALT_KEEP_CACHE, dst, dstw, src, srcw, TMP_REG2, 0);
2160         }
2161 
2162         if (dst & SLJIT_MEM)
2163                 return emit_op_mem(compiler, mem_type, dst_ar, dst, dstw);
2164 
2165         if (sugg_dst_ar != dst_ar)
2166                 return ADD(sugg_dst_ar, dst_ar, ZERO);
2167 
2168         return SLJIT_SUCCESS;
2169 }
2170 
2171 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op0(struct sljit_compiler *compiler, sljit_si op) {
2172         CHECK_ERROR();
2173         CHECK(check_sljit_emit_op0(compiler, op));
2174 
2175         op = GET_OPCODE(op);
2176         switch (op) {
2177         case SLJIT_NOP:
2178                 return push_0_buffer(compiler, TILEGX_OPC_FNOP, __LINE__);
2179 
2180         case SLJIT_BREAKPOINT:
2181                 return PI(BPT);
2182 
2183         case SLJIT_LUMUL:
2184         case SLJIT_LSMUL:
2185         case SLJIT_UDIVI:
2186         case SLJIT_SDIVI:
2187                 SLJIT_ASSERT_STOP();
2188         }
2189 
2190         return SLJIT_SUCCESS;
2191 }
2192 
2193 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op1(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw)
2194 {
2195         CHECK_ERROR();
2196         CHECK(check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw));
2197         ADJUST_LOCAL_OFFSET(dst, dstw);
2198         ADJUST_LOCAL_OFFSET(src, srcw);
2199 
2200         switch (GET_OPCODE(op)) {
2201         case SLJIT_MOV:
2202         case SLJIT_MOV_P:
2203                 return emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
2204 
2205         case SLJIT_MOV_UI:
2206                 return emit_op(compiler, SLJIT_MOV_UI, INT_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
2207 
2208         case SLJIT_MOV_SI:
2209                 return emit_op(compiler, SLJIT_MOV_SI, INT_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
2210 
2211         case SLJIT_MOV_UB:
2212                 return emit_op(compiler, SLJIT_MOV_UB, BYTE_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_ub) srcw : srcw);
2213 
2214         case SLJIT_MOV_SB:
2215                 return emit_op(compiler, SLJIT_MOV_SB, BYTE_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sb) srcw : srcw);
2216 
2217         case SLJIT_MOV_UH:
2218                 return emit_op(compiler, SLJIT_MOV_UH, HALF_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_uh) srcw : srcw);
2219 
2220         case SLJIT_MOV_SH:
2221                 return emit_op(compiler, SLJIT_MOV_SH, HALF_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sh) srcw : srcw);
2222 
2223         case SLJIT_MOVU:
2224         case SLJIT_MOVU_P:
2225                 return emit_op(compiler, SLJIT_MOV, WORD_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
2226 
2227         case SLJIT_MOVU_UI:
2228                 return emit_op(compiler, SLJIT_MOV_UI, INT_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
2229 
2230         case SLJIT_MOVU_SI:
2231                 return emit_op(compiler, SLJIT_MOV_SI, INT_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
2232 
2233         case SLJIT_MOVU_UB:
2234                 return emit_op(compiler, SLJIT_MOV_UB, BYTE_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_ub) srcw : srcw);
2235 
2236         case SLJIT_MOVU_SB:
2237                 return emit_op(compiler, SLJIT_MOV_SB, BYTE_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sb) srcw : srcw);
2238 
2239         case SLJIT_MOVU_UH:
2240                 return emit_op(compiler, SLJIT_MOV_UH, HALF_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_uh) srcw : srcw);
2241 
2242         case SLJIT_MOVU_SH:
2243                 return emit_op(compiler, SLJIT_MOV_SH, HALF_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sh) srcw : srcw);
2244 
2245         case SLJIT_NOT:
2246                 return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src, srcw);
2247 
2248         case SLJIT_NEG:
2249                 return emit_op(compiler, SLJIT_SUB | GET_ALL_FLAGS(op), IMM_OP, dst, dstw, SLJIT_IMM, 0, src, srcw);
2250 
2251         case SLJIT_CLZ:
2252                 return emit_op(compiler, op, (op & SLJIT_INT_OP) ? INT_DATA : WORD_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
2253         }
2254 
2255         return SLJIT_SUCCESS;
2256 }
2257 
2258 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op2(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w)
2259 {
2260         CHECK_ERROR();
2261         CHECK(check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w));
2262         ADJUST_LOCAL_OFFSET(dst, dstw);
2263         ADJUST_LOCAL_OFFSET(src1, src1w);
2264         ADJUST_LOCAL_OFFSET(src2, src2w);
2265 
2266         switch (GET_OPCODE(op)) {
2267         case SLJIT_ADD:
2268         case SLJIT_ADDC:
2269                 return emit_op(compiler, op, CUMULATIVE_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
2270 
2271         case SLJIT_SUB:
2272         case SLJIT_SUBC:
2273                 return emit_op(compiler, op, IMM_OP, dst, dstw, src1, src1w, src2, src2w);
2274 
2275         case SLJIT_MUL:
2276                 return emit_op(compiler, op, CUMULATIVE_OP, dst, dstw, src1, src1w, src2, src2w);
2277 
2278         case SLJIT_AND:
2279         case SLJIT_OR:
2280         case SLJIT_XOR:
2281                 return emit_op(compiler, op, CUMULATIVE_OP | LOGICAL_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
2282 
2283         case SLJIT_SHL:
2284         case SLJIT_LSHR:
2285         case SLJIT_ASHR:
2286                 if (src2 & SLJIT_IMM)
2287                         src2w &= 0x3f;
2288                 if (op & SLJIT_INT_OP)
2289                         src2w &= 0x1f;
2290 
2291                 return emit_op(compiler, op, IMM_OP, dst, dstw, src1, src1w, src2, src2w);
2292         }
2293 
2294         return SLJIT_SUCCESS;
2295 }
2296 
2297 SLJIT_API_FUNC_ATTRIBUTE struct sljit_label * sljit_emit_label(struct sljit_compiler *compiler)
2298 {
2299         struct sljit_label *label;
2300 
2301         flush_buffer(compiler);
2302 
2303         CHECK_ERROR_PTR();
2304         CHECK_PTR(check_sljit_emit_label(compiler));
2305 
2306         if (compiler->last_label && compiler->last_label->size == compiler->size)
2307                 return compiler->last_label;
2308 
2309         label = (struct sljit_label *)ensure_abuf(compiler, sizeof(struct sljit_label));
2310         PTR_FAIL_IF(!label);
2311         set_label(label, compiler);
2312         return label;
2313 }
2314 
2315 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_ijump(struct sljit_compiler *compiler, sljit_si type, sljit_si src, sljit_sw srcw)
2316 {
2317         sljit_si src_r = TMP_REG2;
2318         struct sljit_jump *jump = NULL;
2319 
2320         flush_buffer(compiler);
2321 
2322         CHECK_ERROR();
2323         CHECK(check_sljit_emit_ijump(compiler, type, src, srcw));
2324         ADJUST_LOCAL_OFFSET(src, srcw);
2325 
2326         if (FAST_IS_REG(src)) {
2327                 if (reg_map[src] != 0)
2328                         src_r = src;
2329                 else
2330                         FAIL_IF(ADD_SOLO(TMP_REG2_mapped, reg_map[src], ZERO));
2331         }
2332 
2333         if (type >= SLJIT_CALL0) {
2334                 SLJIT_ASSERT(reg_map[PIC_ADDR_REG] == 16 && PIC_ADDR_REG == TMP_REG2);
2335                 if (src & (SLJIT_IMM | SLJIT_MEM)) {
2336                         if (src & SLJIT_IMM)
2337                                 FAIL_IF(emit_const(compiler, reg_map[PIC_ADDR_REG], srcw, 1));
2338                         else {
2339                                 SLJIT_ASSERT(src_r == TMP_REG2 && (src & SLJIT_MEM));
2340                                 FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
2341                         }
2342 
2343                         FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_R0], ZERO));
2344 
2345                         FAIL_IF(ADDI_SOLO(54, 54, -16));
2346 
2347                         FAIL_IF(JALR_SOLO(reg_map[PIC_ADDR_REG]));
2348 
2349                         return ADDI_SOLO(54, 54, 16);
2350                 }
2351 
2352                 /* Register input. */
2353                 if (type >= SLJIT_CALL1)
2354                         FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_R0], ZERO));
2355 
2356                 FAIL_IF(ADD_SOLO(reg_map[PIC_ADDR_REG], reg_map[src_r], ZERO));
2357 
2358                 FAIL_IF(ADDI_SOLO(54, 54, -16));
2359 
2360                 FAIL_IF(JALR_SOLO(reg_map[src_r]));
2361 
2362                 return ADDI_SOLO(54, 54, 16);
2363         }
2364 
2365         if (src & SLJIT_IMM) {
2366                 jump = (struct sljit_jump *)ensure_abuf(compiler, sizeof(struct sljit_jump));
2367                 FAIL_IF(!jump);
2368                 set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_JAL : 0));
2369                 jump->u.target = srcw;
2370                 FAIL_IF(emit_const(compiler, TMP_REG2_mapped, 0, 1));
2371 
2372                 if (type >= SLJIT_FAST_CALL) {
2373                         FAIL_IF(ADD_SOLO(ZERO, ZERO, ZERO));
2374                         jump->addr = compiler->size;
2375                         FAIL_IF(JR_SOLO(reg_map[src_r]));
2376                 } else {
2377                         jump->addr = compiler->size;
2378                         FAIL_IF(JR_SOLO(reg_map[src_r]));
2379                 }
2380 
2381                 return SLJIT_SUCCESS;
2382 
2383         } else if (src & SLJIT_MEM) {
2384                 FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
2385                 flush_buffer(compiler);
2386         }
2387 
2388         FAIL_IF(JR_SOLO(reg_map[src_r]));
2389 
2390         if (jump)
2391                 jump->addr = compiler->size;
2392 
2393         return SLJIT_SUCCESS;
2394 }
2395 
2396 #define BR_Z(src) \
2397         inst = BEQZ_X1 | SRCA_X1(src); \
2398         flags = IS_COND;
2399 
2400 #define BR_NZ(src) \
2401         inst = BNEZ_X1 | SRCA_X1(src); \
2402         flags = IS_COND;
2403 
2404 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump * sljit_emit_jump(struct sljit_compiler *compiler, sljit_si type)
2405 {
2406         struct sljit_jump *jump;
2407         sljit_ins inst;
2408         sljit_si flags = 0;
2409 
2410         flush_buffer(compiler);
2411 
2412         CHECK_ERROR_PTR();
2413         CHECK_PTR(check_sljit_emit_jump(compiler, type));
2414 
2415         jump = (struct sljit_jump *)ensure_abuf(compiler, sizeof(struct sljit_jump));
2416         PTR_FAIL_IF(!jump);
2417         set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
2418         type &= 0xff;
2419 
2420         switch (type) {
2421         case SLJIT_EQUAL:
2422                 BR_NZ(EQUAL_FLAG);
2423                 break;
2424         case SLJIT_NOT_EQUAL:
2425                 BR_Z(EQUAL_FLAG);
2426                 break;
2427         case SLJIT_LESS:
2428                 BR_Z(ULESS_FLAG);
2429                 break;
2430         case SLJIT_GREATER_EQUAL:
2431                 BR_NZ(ULESS_FLAG);
2432                 break;
2433         case SLJIT_GREATER:
2434                 BR_Z(UGREATER_FLAG);
2435                 break;
2436         case SLJIT_LESS_EQUAL:
2437                 BR_NZ(UGREATER_FLAG);
2438                 break;
2439         case SLJIT_SIG_LESS:
2440                 BR_Z(LESS_FLAG);
2441                 break;
2442         case SLJIT_SIG_GREATER_EQUAL:
2443                 BR_NZ(LESS_FLAG);
2444                 break;
2445         case SLJIT_SIG_GREATER:
2446                 BR_Z(GREATER_FLAG);
2447                 break;
2448         case SLJIT_SIG_LESS_EQUAL:
2449                 BR_NZ(GREATER_FLAG);
2450                 break;
2451         case SLJIT_OVERFLOW:
2452         case SLJIT_MUL_OVERFLOW:
2453                 BR_Z(OVERFLOW_FLAG);
2454                 break;
2455         case SLJIT_NOT_OVERFLOW:
2456         case SLJIT_MUL_NOT_OVERFLOW:
2457                 BR_NZ(OVERFLOW_FLAG);
2458                 break;
2459         default:
2460                 /* Not conditional branch. */
2461                 inst = 0;
2462                 break;
2463         }
2464 
2465         jump->flags |= flags;
2466 
2467         if (inst) {
2468                 inst = inst | ((type <= SLJIT_JUMP) ? BOFF_X1(5) : BOFF_X1(6));
2469                 PTR_FAIL_IF(PI(inst));
2470         }
2471 
2472         PTR_FAIL_IF(emit_const(compiler, TMP_REG2_mapped, 0, 1));
2473         if (type <= SLJIT_JUMP) {
2474                 jump->addr = compiler->size;
2475                 PTR_FAIL_IF(JR_SOLO(TMP_REG2_mapped));
2476         } else {
2477                 SLJIT_ASSERT(reg_map[PIC_ADDR_REG] == 16 && PIC_ADDR_REG == TMP_REG2);
2478                 /* Cannot be optimized out if type is >= CALL0. */
2479                 jump->flags |= IS_JAL | (type >= SLJIT_CALL0 ? SLJIT_REWRITABLE_JUMP : 0);
2480                 PTR_FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_R0], ZERO));
2481                 jump->addr = compiler->size;
2482                 PTR_FAIL_IF(JALR_SOLO(TMP_REG2_mapped));
2483         }
2484 
2485         return jump;
2486 }
2487 
2488 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_is_fpu_available(void)
2489 {
2490         return 0;
2491 }
2492 
2493 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop1(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw)
2494 {
2495         SLJIT_ASSERT_STOP();
2496 }
2497 
2498 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop2(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w)
2499 {
2500         SLJIT_ASSERT_STOP();
2501 }
2502 
2503 SLJIT_API_FUNC_ATTRIBUTE struct sljit_const * sljit_emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw init_value)
2504 {
2505         struct sljit_const *const_;
2506         sljit_si reg;
2507 
2508         flush_buffer(compiler);
2509 
2510         CHECK_ERROR_PTR();
2511         CHECK_PTR(check_sljit_emit_const(compiler, dst, dstw, init_value));
2512         ADJUST_LOCAL_OFFSET(dst, dstw);
2513 
2514         const_ = (struct sljit_const *)ensure_abuf(compiler, sizeof(struct sljit_const));
2515         PTR_FAIL_IF(!const_);
2516         set_const(const_, compiler);
2517 
2518         reg = FAST_IS_REG(dst) ? dst : TMP_REG2;
2519 
2520         PTR_FAIL_IF(emit_const_64(compiler, reg, init_value, 1));
2521 
2522         if (dst & SLJIT_MEM)
2523                 PTR_FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, TMP_REG2, 0));
2524         return const_;
2525 }
2526 
2527 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr)
2528 {
2529         sljit_ins *inst = (sljit_ins *)addr;
2530 
2531         inst[0] = (inst[0] & ~(0xFFFFL << 43)) | (((new_addr >> 32) & 0xffff) << 43);
2532         inst[1] = (inst[1] & ~(0xFFFFL << 43)) | (((new_addr >> 16) & 0xffff) << 43);
2533         inst[2] = (inst[2] & ~(0xFFFFL << 43)) | ((new_addr & 0xffff) << 43);
2534         SLJIT_CACHE_FLUSH(inst, inst + 3);
2535 }
2536 
2537 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant)
2538 {
2539         sljit_ins *inst = (sljit_ins *)addr;
2540 
2541         inst[0] = (inst[0] & ~(0xFFFFL << 43)) | (((new_constant >> 48) & 0xFFFFL) << 43);
2542         inst[1] = (inst[1] & ~(0xFFFFL << 43)) | (((new_constant >> 32) & 0xFFFFL) << 43);
2543         inst[2] = (inst[2] & ~(0xFFFFL << 43)) | (((new_constant >> 16) & 0xFFFFL) << 43);
2544         inst[3] = (inst[3] & ~(0xFFFFL << 43)) | ((new_constant & 0xFFFFL) << 43);
2545         SLJIT_CACHE_FLUSH(inst, inst + 4);
2546 }
2547 
2548 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_register_index(sljit_si reg)
2549 {
2550         CHECK_REG_INDEX(check_sljit_get_register_index(reg));
2551         return reg_map[reg];
2552 }
2553 
2554 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_custom(struct sljit_compiler *compiler,
2555         void *instruction, sljit_si size)
2556 {
2557         CHECK_ERROR();
2558         CHECK(check_sljit_emit_op_custom(compiler, instruction, size));
2559         return SLJIT_ERR_UNSUPPORTED;
2560 }
2561 

/* [<][>][^][v][top][bottom][index][help] */